【题目】“郑一”号宇宙飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心的在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点的时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东60°方向,仰角为60°,救援中心测得飞船位于其南偏西30°方向,仰角为30°,救援中心测得着陆点位于其正东方向.
(1)求两救援中心间的距离;
(2)救援中心与着陆点间的距离.
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是: ,,,,.
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,求数学成绩在之外的人数.
分数段 |
| |||
X:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(1+cosωx,1), =(1,a+ sinωx)(ω为常数且ω>0),函数f(x)= 在R上的最大值为2.
(1)求实数a的值;
(2)把函数y=f(x)的图象向右平移 个单位,可得函数y=g(x)的图象,若y=g(x)在[0, ]上为增函数,求ω的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.
(1)求证:∥平面EFGH;
(2)求证:四边形EFGH是矩形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在8件获奖作品中,有3件一等奖,有5件二等奖,从这8件作品中任取3件.
(1)求取出的3件作品中,一等奖多于二等奖的概率;
(2)设X为取出的3件作品中一等奖的件数,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3﹣ x2+6x+m.
(1)对于x∈R,f′(x)≥a恒成立,求a的最大值;
(2)若方程f(x)=0有且仅有一个实根,求m的取值范围;
(3)当m=2时,若函数g(x)= + x﹣6+2blnx(b≠0)在[1,2]上单调递减,求实数b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,BA,CD的延长线相交于点E,EF∥DA,并与CB的延长线交于点F,FG切⊙O于G.
(1)求证:BEEF=CEBF;
(2)求证:FE=FG.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:
降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
工期延误天数Y | 0 | 2 | 6 | 10 |
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(I)工期延误天数Y的均值与方差;
(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com