精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为自然对数的底数, .

(1)试讨论函数的单调性;

(2)当时, 恒成立,求实数的取值范围.

【答案】(1) 当时, 上单调递增;当时, 上单调递增,在上单调递减.

(2) .

【解析】试题分析:(1)对函数求导,关注定义域,对参数 a进行讨论,得出函数的单调性;(2)解决恒成立的最基本方法就是分离参数,化为时恒成立.设右边为函数g(x),通过两次求导研究函数g(x)的单调性和最大值,最后利用极值原理得出a的范围.

试题解析:

(1)的定义域为

时,则,∴上单调递增;

时,则由,∴

时, ,∴上单调递增;

时, ,∴上单调递减.

综上所述,当时, 上单调递增;

时, 上单调递增,在上单调递减.

(2)由题意得: 时恒成立,

时恒成立.

,( ),

. 

时恒成立,

上单调递减,

∴当时, ,∴ 上单调递增;

时, ,∴ 上单调递减.

处取得最大值

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

知圆锥曲线参数和定点此圆锥曲线的左、右焦点,以原点,以的正半轴为极轴建立极坐标系.

1直线直角坐标方程;

2过点与直线直的直线此圆锥曲线于两点,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为,再由乙猜甲刚才想的数字,把乙猜的数字记为,且.若,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,,表示空间中三条不同的直线,表示平面, 给出下列命题:

,, ; ② ,, ;

,, ; ④ , , .

其中真命题的序号是( )

A. ①② B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制.已知高三学生的原始成绩均分布在发布成绩使用等级制各等级划分标准见表.

原始成绩

85分及以上

70分到84

60分到69

60分以下

等级

优秀

良好

及格

不及格

为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计按照的分组作出频率分布直方图如图所示其中等级为不及格的有5人,优秀的有3人.

1)求和频率分布直方图中的的值

2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高三学生中任选3人,求至少有1人成绩是及格以上等级的概率;

3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取3名学生进行学习经验介绍,记表示抽取的3名学生中优秀等级的学生人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱载堉(1536—1611),明太祖九世孙,音乐家、数学家、天文历算家,在他多达百万字的著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子。他对文艺的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包括钢琴,故朱载堉被誉为“钢琴理论的鼻祖”。“十二平均律”是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第二个音的频率为,第八个音的频率为,则等于

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, 平面,,点上的点,且 .

(1)求证:对任意的 ,都有.

(2)设二面角C-AE-D的大小为 ,直线BE与平面所成的角为 ,

,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列的前项和为;数列中,,且满足

(1)求的通项;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的不等式恰有3个整数解,则实数的最小值为( )

A. 1 B. C. D.

查看答案和解析>>

同步练习册答案