【题目】已知函数, 为自然对数的底数, .
(1)试讨论函数的单调性;
(2)当时, 恒成立,求实数的取值范围.
【答案】(1) 当时, 在上单调递增;当时, 在上单调递增,在上单调递减.
(2) .
【解析】试题分析:(1)对函数求导,关注定义域,对参数 a进行讨论,得出函数的单调性;(2)解决恒成立的最基本方法就是分离参数,化为对时恒成立.设右边为函数g(x),通过两次求导研究函数g(x)的单调性和最大值,最后利用极值原理得出a的范围.
试题解析:
(1)的定义域为, .
若时,则,∴在上单调递增;
若时,则由,∴.
当时, ,∴在上单调递增;
当时, ,∴在上单调递减.
综上所述,当时, 在上单调递增;
当时, 在上单调递增,在上单调递减.
(2)由题意得: 对时恒成立,
∴对时恒成立.
令,( ),
∴.
令,
∴对时恒成立,
∴在上单调递减,
∵,
∴当时, ,∴, 在上单调递增;
当时, ,∴, 在上单调递减.
∴在处取得最大值,
∴的取值范围是.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知圆锥曲线(为参数)和定点,、是此圆锥曲线的左、右焦点,以原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)求直线的直角坐标方程;
(2)经过点且与直线垂直的直线交此圆锥曲线于、两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为,再由乙猜甲刚才想的数字,把乙猜的数字记为,且、.若,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用,,表示空间中三条不同的直线,表示平面, 给出下列命题:
① 若,, 则∥; ② 若∥,∥, 则∥;
③ 若∥,∥, 则∥; ④ 若 , , 则∥.
其中真命题的序号是( )
A. ①② B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制.已知高三学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见表.
原始成绩 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | 优秀 | 良好 | 及格 | 不及格 |
为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计,按照的分组作出频率分布直方图如图所示,其中等级为不及格的有5人,优秀的有3人.
(1)求和频率分布直方图中的的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高三学生中任选3人,求至少有1人成绩是及格以上等级的概率;
(3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取3名学生进行学习经验介绍,记表示抽取的3名学生中优秀等级的学生人数,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】朱载堉(1536—1611),明太祖九世孙,音乐家、数学家、天文历算家,在他多达百万字的著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子。他对文艺的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包括钢琴,故朱载堉被誉为“钢琴理论的鼻祖”。“十二平均律”是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第二个音的频率为,第八个音的频率为,则等于
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是正方形, 平面,,点是上的点,且 .
(1)求证:对任意的 ,都有.
(2)设二面角C-AE-D的大小为 ,直线BE与平面所成的角为 ,
若,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com