对任意的实数k,直线y=kx+1与圆x2+y2=2 的位置关系一定是( )
A.相离
B.相切
C.相交但直线不过圆心
D.相交且直线过圆心
【答案】分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.
解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在
∵(0,1)在圆x2+y2=2内
∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心
故选C.
点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.