精英家教网 > 高中数学 > 题目详情
6.正方体中相邻两个面上的对角线所成的角的大小为(  )
A.60°B.45°C.90°D.30°

分析 在正方体ABCD-A1B1C1D1中,由AD1=B1D1=AB1,能求出正方体中相邻两个面上的对角线所成的角的大小.

解答 解:在正方体ABCD-A1B1C1D1中,
∵AD1=B1D1=AB1
∴△AB1D1是等边三角形,
∴正方体中相邻两个面上的对角线所成的角:
∠AD1B1=60°.
故选:A.

点评 本题考查正方体中相邻两个面上的对角线所成的角的大小的求法,是基础题,解题时要认真审题,注意正方体的结构特征的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在△ABC中,$AC=\sqrt{7}$,B=60°,BC边上的高$h=\frac{{3\sqrt{3}}}{2}$,则BC=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=1oga(1-x)+1oga(x+3)(0<a<1).
(1)求函数f(x)的定义域;
(2)解方程f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别是F1,F2,离心率是e=$\frac{1}{2}$,P点在椭圆上,△PF1F2的内切圆面积最大值是$\frac{4}{3}$π.
(1)求椭圆方程;
(2)若A,B,C,D是椭圆上不重合的四个点,$\overrightarrow{{F}_{1}A}$∥$\overrightarrow{{F}_{1}C}$,$\overrightarrow{{F}_{1}B}$∥$\overrightarrow{{F}_{1}D}$,$\overrightarrow{AC}$•$\overrightarrow{BD}$D=0,求:|$\overrightarrow{AC}$|+|$\overrightarrow{BD}$|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆台的上、下底面面积分别为4和16,中截面把圆台分成两部分,则这两部分的体积之比为(  )
A.37:8B.8:27C.27:64D.19:37

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在(2x-3y)10的展开式中,求:
(1)各项系数的和;
(2)奇数项的二项式系数和与偶数项的二项式系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,余弦定理表达正确的是(  )
A.a2=b2+c2+2accosAB.b2=a2+c2-2accosB
C.c2=a2+b2-2absinCD.以上结果都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),$\overrightarrow{c}$=(-1,0).
(1)求函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的周期和单调减区间;
(2)若x∈[-$\frac{3π}{8}$,$\frac{π}{4}$],函数f(x)=λ$\overrightarrow{a}$•$\overrightarrow{b}$的最大值为$\frac{1}{2}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}{0,x<0}\\{π,x=0}\\{x+1,x>0}\end{array}\right.$,则f(-3)=0,f(0)=π,f(3)=4.

查看答案和解析>>

同步练习册答案