【题目】将三个数,,给予适当的编排,分别取常用对数后成公差为1的等差数列,那么,此时______。
【答案】
【解析】
设x=10a2+81a+207,y=a+2,z=26﹣2a.首先,由x>0,y>0,z>0,知﹣2<a<13.
其次,判断x,y,z的大小关系.
由于x﹣y=10a2+80a+205,其判别式恒小于0,因此x﹣y>0,即x>y; 同样,x﹣
z=10a2+83a+181的判别式也恒小于0,故x>z.此外,y﹣z=3(a﹣8),因当a=8时,y=z 不
合题意,所以分﹣2<a<8和8<a<13两种情况讨论.
(1)当﹣2<a<8.此时y<z,lgy,lgz,lgx构成公差为1的等差数列,所以lgx﹣lgz=lgz
﹣lgy=1.
∴x=10z,z=10y
∴10a2+81a+207=10(26﹣2a),26﹣2a=10(a+2).
∴a=∈(﹣2,8).
(2)8<a<13.此时y>z,lgz,lgy,lgx构成公差为1的等差数列,所以lgy﹣lgz=lgx﹣lgy=1.
∴y=10z,x=10y
∴a+2=10(26﹣2a),10a2+81a+207=10(a+2).
此时方程无解.因此只有a=合乎题意.
故答案为:
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)若过点的直线与曲线交于两点,曲线上是否存在点使得四边形为平行四边形?若存在,求直线的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知点是抛物线上一定点,直线的倾斜角互补,且与抛物线另交于,两个不同的点.
(1)求点到其准线的距离;
(2)求证:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知点是抛物线上一定点,直线的倾斜角互补,且与抛物线另交于,两个不同的点.
(1)求点到其准线的距离;
(2)求证:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了推进课堂改革,提高课堂效率,银川一中引进了平板教学,开始推进“智慧课堂”改革.学校教务处为了了解我校高二年级同学平板使用情况,从高二年级923名同学中抽取50名同学进行调查.先用简单随机抽样从923人中剔除23人,剩下的900人再按系统抽样方法抽取50人,则在这923人中,每个人被抽取的可能性 ( )
A.都相等,且为B.不全相等C.都相等,且为D.都不相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左,右焦点分别为, ,离心率为, 是椭圆上的动点,当时, 的面积为.
(1)求椭圆的标准方程;
(2)若过点的直线交椭圆于, 两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(),.
(1)若对任意的,,都有恒成立,试求m的取值范围;
(2)用表示m,n中的最小值,设函数(),讨论关于x的方程的实数解的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),==0,(x1≠x2),|x2-x1|min=,f(x)=f(-x),将函数f(x)的图象向左平移个单位长度得到函数g(x)的图象,则函数g(x)的单调递减区间是
A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)
C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com