精英家教网 > 高中数学 > 题目详情

在直角梯形ABCD中,ABCDADABCD=2AB=4,ADECD的中点,将△BCE沿BE折起,使得CODE,其中垂足O在线段DE内.

(1)求证:CO⊥平面ABED
(2)问∠CEO(记为θ)多大时,三棱锥CAOE的体积最大,最大值为多少.

(1)见解析(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如图所示,其中M,N分别是AB,AC的中点,G是DF上的一动点.

(1)求该多面体的体积与表面积;
(2)求证:GN⊥AC;
(3)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作图时,不需考虑骨架等因素).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,ABCD是正方形,平面ABCD,E,F是AC,PC的中点.

(1)求证:
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥S ­ABC中,平面EFGH分别与BC,CA,AS,SB交于点E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.

求证:(1)AB∥平面EFGH;
(2)GH∥EF;
(3)GH⊥平面SAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个四棱锥PABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角线的正方形)如图,E是侧棱PC的中点.

(1)求四棱锥PABCD的体积;
(2)求证:平面APC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图C,D是以AB为直径的圆上的两点,,F是AB上的一点,且,将圆沿AB折起,使点C在平面ABD的射影E在BD上,已知

(1)求证:AD平面BCE
(2)求证:AD//平面CEF;
(3)求三棱锥A-CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱的三视图如图所示,且的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

查看答案和解析>>

同步练习册答案