精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A、B、C的对边分别是a、b、c,且b2+c2﹣a2=bc.
(1)求A;
(2)若a= ,sinBsinC=sin2A,求△ABC的周长.

【答案】
(1)解:△ABC中,b2+c2﹣a2=bc,

∴cosA= = =

又A∈(0,π),

∴A=


(2)解:∵a= ,sinBsinC=sin2A,

∴bc=a2=2①;

又b2+c2﹣a2=bc,

∴b2+c2﹣2=bc②;

由①②组成方程组,解得b=c=

∴△ABC的周长为l=a+b+c=3


【解析】(1)由余弦定理求出cosA的值,即得A的值;(2)由正弦定理化sinBsinC=sin2A为bc=a2①,再由b2+c2﹣a2=bc②;列出方程组求出b、c的值,即得△ABC的周长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,且其6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C1:x2+y2=m与圆C2:x2+y2﹣6x﹣8y+16=0相外切.
(1)求m的值;
(2)若圆C1与x轴的正半轴交于点A,与y轴的正半轴交于点B,P为第三象限内一点且在圆C1上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是边长为2的等边三角形,

(1)求证:平面PAM⊥平面PDM;
(2)若点E为PC中点,求二面角P﹣MD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O是△ABC内一点,若 , 则△AOC与△ABC的面积的比值为 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与上、下顶点构成直角三角形,以椭圆的长轴长为直径的圆与直线相切.

(1)求椭圆的标准方程;

(2)设过椭圆右焦点且不平行于轴的动直线与椭圆相交于两点,探究在轴上是否存在定点,使得为定值?若存在,试求出定值和点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某矩形花坛ABCD长AB=3m,宽AD=2m,现将此花坛在原有基础上有拓展成三角形区域,AB、AD分别延长至E、F并使E、C、F三点共线.

(1)要使三角形AEF的面积大于16平方米,则AF的长应在什么范围内?
(2)当AF的长度是多少时,三角形AEF的面积最小?并求出最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有三个不同的零点,则实数的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式x2﹣x﹣m+1>0.
(1)当m=3时解此不等式;
(2)若对于任意的实数x,此不等式恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案