精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

【答案】1)证明见解析 2 到平面的距离为

【解析】试题分析:(1)连结BDAC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,ABx轴,ADy轴,APz轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离

试题解析:(I)设BDAC于点O,连结EO

因为ABCD为矩形,所以OBD的中点。

EPD的中点,所以EO∥PB

EO平面AECPB平面AEC

所以PB∥平面AEC

II

,可得.

由题设易知,所以

所以到平面的距离为

2:等体积法

,可得.

由题设易知,BC

假设到平面的距离为d

又因为PB=

所以

又因为()

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设已知函数f(x)=|lnx|,正数a,b满足a<b,且f(a)=f(b),若f(x)在区间[a2 , b]上的最大值为2,则2a+b=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是,且过点.直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)求的面积的最大值;

(Ⅲ)设直线 分别与轴交于点 .判断 大小关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点.

(1)求线段的长度;

(2) 为坐标原点, 为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断函数f(x)= 在(﹣1,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,动点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)求以为直径且被直线截得的弦长为2的圆的方程;

(Ⅲ)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点,证明:线段的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分图象如图所示,则f(x)的解析式为(
A.f(x)=2sin(x+
B.f(x)=2sin(2x+
C.f(x)=2sin(2x﹣
D.f(x)=2sin(4x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,且圆心在直线上.

Ⅰ)求此圆的方程

Ⅱ)求与直线垂直且与圆相切的直线方程

若点为圆上任意点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级, 一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )

①1月至8月空气合格天数超过20天的月份有5个

②第二季度与第一季度相比,空气达标天数的比重下降了

③8月是空气质量最好的一个月

④6月份的空气质量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步练习册答案