解:(1)当n=1时,a1=3,假设n=k时,ak=4mk+3,mk∈N.当n=k+1时,a{k+1}=3{a{k}}=3{4m{k}+3}=(4-1){4m{k}+3}={C}{0{4m{k}+3}}4{4m{k}+3}•(-1)0+{C}{1{4m{k}+3}}•4{4m{k}+2}•(-1)1++{C}{{4m{k}+2}{4m{k}+3}}•41•(-1){4m{k}+2}+{C}{{4m{k}+3}{4m{k}+3}}•40•(-1){4m{k}+3}=4T-1=4(T-1)+3,其中T={C}{0{4m{k}+3}}4{4m{k}+2}•(-1)0+{C}{1{4m{k}+3}}•4{4m{k}+1}•(-1)1++{C}{{4m{k}+2}{4m{k}+3}}•(-1){4m{k}+2}∈N{*}∴?mk+1=T-1∈N,使ak+1=4mk+1+3.∴当n=k+1时,结论也成立.∴?n∈N*,?mn∈N,使an=4mn+3;(7分)(2)a{n+1}=3{a{n}}=3{4m{n}+3}=(81){m{k}}×27.故a2010的末位数字是7.(10分)