分析 (1)求出f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间;
(2)求出函数的导数,可得切线的斜率和切点,由点斜式方程即可得到切线的方程.
解答 解:(1)函数f(x)的定义域为(0,+∞).
f(x)的导数为$f'(x)=2x-\frac{2e}{x}$=$\frac{{2({x-\sqrt{e}})({x+\sqrt{e}})}}{x}$,
由0<x<$\sqrt{e}$可得f′(x)<0;由x>$\sqrt{e}$可得f′(x)>0.
∴f(x)的单调递减区间是$({0,\sqrt{e}})$,单调递增区间是$({\sqrt{e},+∞})$.
(2)∵f(1)=1,f′(1)=2-2e.
∴切线为y-1=(2-2e)(x-1)
即切线方程为(2e-2)x+y+1-2e=0.
点评 本题考查导数的运用:求切线的方程和单调区间,考查导数的几何意义,考查方程思想的运用,以及运算求解能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若命题p:?x0∈R,x02-x0+1<0,则¬p:?x∉R,x2-x+1≥0 | |
B. | 命题“若x=y,则cosx=cosy”的逆否命题为真命题 | |
C. | 已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4-a)=0.68 | |
D. | 已知相关变量(x,y)满足线性回归方程:$\stackrel{∧}{y}$=2-3x,若变量x增加一个单位,则y平均增加3个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{12}$ | B. | $\frac{2}{9}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com