A. | (10,12) | B. | (25,30) | C. | $(4,\frac{24}{5})$ | D. | (25,+∞) |
分析 画出图象得出,当f(a)=f(b)=f(c),a<b<c时,0<a<5<b<10<<c<12,$\frac{1}{a}$+$\frac{1}{b}$=$\frac{2}{5}$,化简$\frac{abc}{a+b}$=$\frac{5}{2}$c,即可求得范围.
解答 解:f(x)=$\left\{\begin{array}{l}|{\frac{10}{x}-2}|,0<x≤10\\-\frac{1}{2}x+6,x>10\end{array}$,
f(a)=f(b)=f(c),a<b<c,
∴0<a<5<b<10<c<12,
由$\frac{10}{a}$-2=2-$\frac{10}{b}$,可得$\frac{1}{a}$+$\frac{1}{b}$=$\frac{2}{5}$,
∴$\frac{abc}{a+b}$=$\frac{5}{2}$c∈(25,30).
故选:B.
点评 本题考查了函数的性质,运用图象得出a,b,c的范围,关键是得出$\frac{1}{a}$+$\frac{1}{b}$=$\frac{2}{5}$,代数式的化简,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {-1,4,5} | B. | {-1,4} | C. | {-1,1,2,3,4} | D. | {1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com