【题目】已知函数f (x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在上单调递增,求实数m的取值范围.
【答案】(1)b<0或b>4.(2)-1≤m≤0或m≥2.
【解析】试题分析:(1)化简不等式得x∈R,x2-bx+b<0,由二次函数图像得,解得实数b的取值范围; (2)F(x)=x2-mx+1-m2,所以对称轴 ,再结合图像,得 ,解得实数m的取值范围.
试题解析:(1)x∈R,f(x)<bg(x)x∈R,x2-bx+b<0
(-b)2-4b>0b<0或b>4.
(2)F(x)=x2-mx+1-m2,Δ=m2-4(1-m2)=5m2-4.
①当Δ≤0,即-≤m≤时,则必需
-≤m≤0.
②当Δ>0,即m<-或m>时,设方程F(x)=0的根为x1,x2(x1<x2).
若≥1,则x1≤0,即m≥2;
若≤0,则x2≤0,即
-1≤m<-;
综上所述:-1≤m≤0或m≥2.
科目:高中数学 来源: 题型:
【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn .
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中,下列说法正确的是 . (填序号)
①MB∥平面A1DE;
②|BM|是定值;
③A1C⊥DE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E为BC的中点,F在棱AC上,且AF=3FC,
(1)求证:AC⊥平面DEF;
(2)求平面DEF与平面ABD所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求证:存在定点,使得函数图象上任意一点关于点对称的点也在函数的图象上,并求出点的坐标;
(2)定义,其中且,求;
(3)对于(2)中的,求证:对于任意都有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x﹣1),g(x)=loga(3﹣x)(a>0且a≠1)
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,定直线,动点到点的距离与到直线的距离之比等于.
(1)求动点的轨迹的方程;
(2)设轨迹与轴负半轴交于点,过点作不与轴重合的直线交轨迹于两点,直线分别交直线于点.试问:在轴上是否存在定点,使得?若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com