精英家教网 > 高中数学 > 题目详情

【题目】已知的展开式的各二项式系数的和等于128

1)求的值;

2)求的展开式中的有理项;

3)求的展开式中系数最大的项和系数最小的项.

【答案】1;(2;(3)系数最大的项为第五项;系数最小的项为第4

【解析】

1)根据的展开式的各二项式系数的和等于求解.

2)先得到的展开式中的通项公式,再令为整数求解.

3)由通项公式知:第项的系数为,若该系数最大,则为偶数,且最大求解.若该系数最小,则为奇数,且最大求解.

1已知

的展开式的各二项式系数的和等于

.

2的展开式中的通项公式为

为整数,可得36

故展开式的有理项为.

3)第项的系数为

当该系数最大时,为偶数,且最大,此时,

的展开式中系数最大的项为第五项

当该系数最小时,为奇数,且最大,此时,

的展开式中系数最小的项为第4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】根据调查,某学校开设了“街舞”、“围棋”、“武术”三个社团,三个社团参加的人数如下表所示:

社团

街舞

围棋

武术

人数

320

240

200

为调查社团开展情况,学校社团管理部采用分层抽样的方法从中抽取一个容量为n的样本,已知从“围棋”社团抽取的同学比从“街舞”社团抽取的同学少2人.

(1)求三个社团分别抽取了多少同学;

(2)若从“围棋”社团抽取的同学中选出2人担任该社团活动监督的职务,已知“围棋”社团被抽取的同学中有2名女生,求至少有1名女同学被选为监督职务的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,,且.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面平面,底面为梯形,.均为正三角形,的中点,重心.

1)求证:平面

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体ABCDA1B1C1D1的棱长为1,EF分别是棱ADB1C1上的动点,设AEλB1Fμ若平面BEF与正方体的截面是五边形,则λμ的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是整数,幂函数上是单调递增函数.

(1)求幂函数的解析式;

(2)作出函数的大致图象;

(3)写出的单调区间,并用定义法证明在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中不正确的是( )

A.若两个平面有一个公共点,则它们有无数个公共点

B.若已知四个点不共面,则其中任意三点不共线

C.若点既在平面内,又在平面内,则相交于,且点

D.任意两条直线不能确定一个平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A的长度均大于200米,现在边界APAQ处建围墙,在PQ处围竹篱笆.

1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?

2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100.若围围墙用了20000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

同步练习册答案