精英家教网 > 高中数学 > 题目详情

【题目】已知,,点满足,记点的轨迹为.

(1)求轨迹的方程;

(2)若直线过点且与轨迹交于两点.

(i)无论直线绕点怎样转动,在轴上总存在定点,使恒成立,求实数的值.

(ii)在(i)的条件下,求面积的最小值.

【答案】(1)(2)(i)(ii)9

【解析】

(1)利用双曲线的定义及其标准方程即可得出;(2)当直线l的斜率存在时,设直线方程为y=k(x-2),P,Q,与双曲线方程联立消y,利用根与系数的关系、判别式解出即可得出.(i)利用向量垂直与数量积的关系、根与系数的关系即可得出;(ii)利用点到直线的距离公式、弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出

1)由知,点P的轨迹E是以F1、F2为焦点的双曲线右支,由,故轨迹E的方程为

(2)当直线l的斜率存在时,设直线方程为,与双曲线方程联立消y

解得k2 >3

(i)

故得对任意的恒成立,

∴当m =-1时,MP⊥MQ.

当直线l的斜率不存在时,由知结论也成立,

综上,当m =-1时,MP⊥MQ.

(ii)由(i)知,,当直线l的斜率存在时,

, M点到直线PQ的距离为,则

,则,因为

所以

当直线l的斜率不存在时,

综上可知,故的最小值为9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)﹣g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2 , g(x)=2x﹣2;② ,g(x)=x+2;
③f(x)=ex ;④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“友好点”的是 . (填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x﹣2,g(x)=2x﹣5,则不等式|f(x)|+|g(x)|≤2的解集为;|f(2x)|+|g(x)|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先把函数y=sin(x+φ)的图象上个点的横坐标缩短为原来的 (纵坐标不变),再向右平移 个单位,所得函数关于y轴对称,则φ的值可以是(
A.
B.
C.-
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机给人们的生活带来便利的同时,也给青少年的成长带来不利的影响,有人沉迷于手机游戏无法自拔,严重影响了自己的学业,某学校随机抽取个班,调查各班带手机来学校的人数,所得数据的茎叶图如图所示.以组距为将数据分组成,…,时,所作的频率分布直方图是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,⊥底面,点为棱的中点.

(1)(理科生做)证明:

(文科生做)证明:

(2)(理科生做)若为棱上一点,满足,求二面角的余弦值.

(文科生做)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f(2)=1,且对于任意的x∈R,都有f′(x)< ,则不等式f(log2x)> 的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的离心率是 ,过E的右焦点且垂直于椭圆长轴的直线与椭圆交于A,B两点,|AB|=2.
(Ⅰ)求椭圆方程;
(Ⅱ)过点P(0, )的动直线l与椭圆E交于的两点M,N(不是的椭圆顶点),是否存在实数λ,使 为定值?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案