精英家教网 > 高中数学 > 题目详情
如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(Ⅰ)求证:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求点P到平面QBD的距离.
(1)证明见解析(2) (3)
(Ⅰ)由P-ABD,Q-CBD是相同正三棱锥,可知△PBD与△QBD是全等等腰三角形 …1分
取BD中点E,连结PE、QE,则BD⊥PE,BD⊥QE.故BD⊥平面PQE,从而BD⊥PQ.  ………4分
(Ⅱ)由(1)知∠PEQ是二面角P-BD-Q的平面角                    ……………………5分
作PM⊥平面,垂足为M,作QN⊥平面,垂足为N,则PM∥QN,M、N分别是正△ABD与正△BCD的中心,从而点A、M、E、N、C共线,PM与QN确定平面PACQ,且PMNQ为矩形. ……可得ME=NE=,PE=QE=,PQ=MN=…7分∴cos∠PEQ=  ………9分
(Ⅲ)由(1)知BD⊥平面PEQ.设点P到平面QBD的距离为h,则
 ∴
∴ .  ∴ .                             …………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图:已知正方体ABCD—A1B1C1D1,过BD1的平面分别交棱AA1和棱CC1于E、F两点。(1)求证:A1E=CF; (2)若E、F分别是棱AA1和棱CC1的中点,求证:平面EBFD1⊥平面BB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,已知平行四边形和矩形所在的平面互相垂直,是线段的中点.

(1)求证:;(2)求二面角的大小;
(3)设点为一动点,若点出发,沿棱按照
的路线运动到点,求这一过程中形成的三棱锥的体积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,
的中点.侧视图是直角梯形,俯视图是等腰直角
三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积;
(Ⅱ)求证:EM∥平面ABC
(Ⅲ) 试问在棱DC上是否存在点N,使NM⊥平面?若存在,确定点N的位置;
若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形ABCE中,,D是CE的中点,点M和点N在ADE绕AD向上翻折的过程中,分别以的速度,同时从点A和点B沿AE和BD各自匀速行进,t 为行进时间,0
(1)      求直线AE与平面CDE所成的角;
(2)      求证:MN//平面CDE。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱锥中,
D是AC的中点,.
(1)求证:(5分)
(2)(理科)求二面角的大小。(7分)
(文科)求二面角平面角的大小。(7分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱.
(1)求证:平面
(2)求证:
(3)若.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)
如图(20)图,为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角的大小为,求:
(Ⅰ)点B到平面的距离;
(Ⅱ)异面直线lAB所成的角(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知上的点.
(1)当
(2)当二面角的大小为的值.

查看答案和解析>>

同步练习册答案