【题目】函数的部分图象如图所示,点A,B,C在图象上,,,并且轴
(1)求和的值及点B的坐标;
(2)若,且,求的值;
(3)将函数的图象上各点的纵坐标变为原来的倍,横坐标不变,再将所得图象各点的横坐标变为原来的倍,纵坐标不变,最后将所得图象向右平移个单位,得到的图象,若关于x的方程在区间上有两个不同解,求实数a的取值范围.
【答案】(1),,;(2);(3)或.
【解析】
(1)把A,C两点的坐标代入函数解析式中,根据已知条件求出和的值,进而求出B的坐标;
(2)根据(1)所得函数的解析式,结合,可以得到的值,再根据同角的三角函数关系式求出的值,最后根据两角差的正弦公式求出的值;
(3)根据正弦型函数图象的变换规律求出函数的解析式,利用换元法,结合一元二次方程根的分布,分类讨论即可.
(1)把A, C两点坐标代入函数解析式中得:
,因为,
所以,,即函数的解析式为,
当时,函数的对称轴为:,又因为轴,所以.
(2)因为,
由(1)有,即,
由,知,
所以
故
(3)由题可知,,
令,,则,
若要使得关于x的方程在上有两个不同的根,
则关于t的方程在上只有唯一解,
所以有以下几种情况
①,解得;
②解得或,当是,,满足题意;
当时,,不符合题意,舍去.
③当时,解得,此时另一个根不在[0,1)上,所以符合题意.
综上所述a的取值范围是.
科目:高中数学 来源: 题型:
【题目】如图,已知△中,∠=90°,,且=1,=2,△绕旋转至,使点与点之间的距离=.
(1)求证:⊥平面;
(2)求二面角的大小;
(3)求异面直线与所成的角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不交于同一点的三条直线:4x+y-4=0,:mx+y=0,:x-my-4=0.
(1)当这三条直线不能围成三角形时,求实数m的值;
(2)当与,都垂直时,求两垂足间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:
(1)求频率直方图中a的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.
(1)求椭圆的方程;
(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某糕点房推出一类新品蛋糕,该蛋糕的成本价为4元,售价为8元.受保质期的影响,当天没有销售完的部分只能销毁.经过长期的调研,统计了一下该新品的日需求量.现将近期一个月(30天)的需求量展示如下:
日需求量x(个) | 20 | 30 | 40 | 50 |
天数 | 5 | 10 | 10 | 5 |
(1)从这30天中任取两天,求两天的日需求量均为40个的概率.
(2)以上表中的频率作为概率,列出日需求量的分布列,并求该月的日需求量的期望.
(3)根据(2)中的分布列求得当该糕点房一天制作35个该类蛋糕时,对应的利润的期望值为;现有员工建议扩大生产一天45个,求利用利润的期望值判断此建议该不该被采纳.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题 “存在”,命题:“曲线表示焦点在轴上的椭圆”,命题 “曲线表示双曲线”
(1)若“且”是真命题,求实数的取值范围;
(2)若是的必要不充分条件,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com