精英家教网 > 高中数学 > 题目详情

【题目】南康某服装厂拟在年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元满足.已知年生产该产品的固定投入为万元,每生产万件该产品需要再投入万元.厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

1)将年该产品的利润万元表示为年促销费用万元的函数;

2)该服装厂年的促销费用投入多少万元时,利润最大?

【答案】1;(2)该服装厂年的促销费用投入万元时,利润最大.

【解析】

1)由题意知,每件产品的销售价格为,再由该产品的利润等于产品的总销售额减去固定投入、再投入以及年促销费,可得出利润万元表示为年促销费用万元的函数;

2)将函数解析式变形为,利用基本不等式可求得该服装厂年利润的最大值,利用等号成立的条件可求得该服装厂年的促销费用.

1)由题意知:每件产品的销售价格为

2)由

当且仅当,即时取等号.

答:该服装厂年的促销费用投入万元时,利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的左、右焦点分别为,两焦点与短轴的一个顶点构成等腰直角三角形,且点在椭圆上.

(1)求椭圆的标准方程;

(2)如图所示,过椭圆的左焦点作直线(斜率存在且不为0)交椭圆两点,过右焦点作直线交椭圆两点,且,直线轴于点,动点(异于)在椭圆上运动.

①证明: 为常数;

②当时,利用上述结论求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,底面是正方形,且

1)求证

2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

84

83

80

75

68

已知

1)求出的值;

2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;可供选择的数据:

3)用表示用(2)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数的分布列和数学期望

(参考公式:线性回归方程中的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线过点且倾斜角为.

(1)求曲线的直角坐标方程和直线的参数方程;

(2)设直线与曲线交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.如果数列满足 ,其中,则称的“陪伴数列”.

(Ⅰ)写出数列的“陪伴数列”

(Ⅱ)若的“陪伴数列”是.试证明: 成等差数列.

(Ⅲ)若为偶数,且的“陪伴数列”是,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在三棱锥中,是直角三角形,,点分别为的中点.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

查看答案和解析>>

同步练习册答案