分析 (Ⅰ)将a=4的值代入函数解析式,通过求导判断函数的单调性即可;结合函数的单调性进而求出函数在闭区间上的最值;
(Ⅱ)问题转化为a>-x2-2x在x∈[1,+∞)恒成立,求出函数y=-x2-2x的最大值即可.
解答 解:(Ⅰ)a=4时:f(x)=x+$\frac{4}{x}$+2,f(x)在(0,2)递减,在(2,+∞)递增,
证明如下:
由f′(x)=1-$\frac{4}{{x}^{2}}$=$\frac{{x}^{2}-4}{{x}^{2}}$=$\frac{(x+2)(x-2)}{{x}^{2}}$,(x>0),
令f′(x)>0,解得:x>2,令f′(x)<0,解得:0<x<2,
∴f(x)在(0,2)递减,在(2,+∞)递增,
由函数的单调性得:f(x)在[1,2)递减,在(2,3]递增,
而f(1)=1+4+2=7,f(2)=6,f(3)=6$\frac{1}{3}$,
∴f(x)的值域是[6,7];
(Ⅱ)对任意x∈[1,+∞),f(x)>0恒成立
等价于x+$\frac{a}{x}$+2>0在x∈[1,+∞)恒成立
等价于a>-x2-2x=-(x+1)2+1恒成立,
而当x=1时,y=-(x+1)2+1取最大值-3,
故a>-3.
点评 本题考查了函数的单调性问题,考查导数的应用,函数闭区间上的最值,考查函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ±$\frac{3}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{\sqrt{10}}$ | D. | ±$\frac{3}{\sqrt{10}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{4}{5}$ | C. | $\frac{5}{6}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 是奇函数不是偶函数 | B. | 是偶函数不是奇函数 | ||
C. | 既是奇函数又是偶函数 | D. | 既不是奇函数又不是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -8 | B. | $-2\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com