精英家教网 > 高中数学 > 题目详情

用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,V3的值为


  1. A.
    -845
  2. B.
    220
  3. C.
    -57
  4. D.
    34
C
分析:首先把一个n次多项式f(x)写成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出V3的值.
解答:∵f(x)=12+35x-8x2+79x3+6x4+5x5+3x6
=((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v0=a6=3,
v1=v0x+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
v3=v2x+a3=34×(-4)+79=-57,
∴V3的值为-57;
故选C.
点评:本题考查通过程序框图解决实际问题,把实际问题通过数学上的算法,写成程序,然后求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用秦九韶算法计算当x=2时,多项函数f(x)=3x3+7x2-9x+5的值为_______________.

查看答案和解析>>

同步练习册答案