精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数在(0, ]上是减函数,在[ ,+∞)上是增函数.
(1)若f(x)=x+ ,函数在(0,a]上的最小值为4,求a的值;
(2)对于(1)中的函数在区间A上的值域是[4,5],求区间长度最大的A(注:区间长度=区间的右端点﹣区间的左断点);
(3)若(1)中函数的定义域是[2,+∞)解不等式f(a2﹣a)≥f(2a+4).

【答案】
(1)解:由题意的:函数f(x)在 上单调递减,在 上单调递增,

当a> 时,即a>1时函数在x= 处取得最小值,

∴f( )=2 =4,解得a=4,

当a< 时,即0<a<1时,函数在x=a处取得最小值,

∴f(a)=a+1=4,解得a=3不符合题意,舍去.

综上可得 a=4


(2)解:由(1)得f(x)=x+ ,又x=2时函数取得最小值4,

令x+ =5,则x2﹣5x+4=0,解得 x=1或 x=4,

又2∈[1,4],

∴区间长度最大的A=[1,4]


(3)解:由(1)知函数在[2,+∞)上单调递增,

∴原不等式等价于

解得a≥4或a=﹣1,

∴不等式的解集{a|a≥4或a=﹣1}


【解析】(1)利用性质,讨论 与区间(0,a]的关系,从而利用最小值是4,建立条件关系.(2)根据值域为[4,5],确定对应的变量x,然后判断最大的区间.(3)利用函数的单调性,解不等式即可.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

() 若函数有零点, 求实数的取值范围;

() 证明:,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求函数的极值;

(Ⅱ)若 ,使得),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查中小学课外使用互联网的情况,教育部向华东、华北、华南和西部地区60所中小学发出问卷份, 名学生参加了问卷调查,并根据所得数据画出样本的频率分布直方图(如图).

(1)要从这名中小学中用分层抽样的方法抽取名中小学生进一步调查,则在(小时)时间段内应抽出的人数是多少?

(2)若希望的中小学生每天使用互联网时间不少于(小时),请估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=4n,数列{bn}满足b1=-3,

bn1bn+(2n-3)(n∈N*).

(1)求数列{an}的通项公式;

(2)求数列{bn}的通项公式;

(3)cn,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,是偶函数,且在区间(0,1)上为增函数的是(
A.y=|x|
B.y=1﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为

(Ⅰ)求直线l以及曲线C的极坐标方程;

(Ⅱ)设直线l与曲线C交于A,B两点,求PAB的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在直角坐标系中,已知直线l1 ),抛物线C t为参数).以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求直线l1 和抛物线C的极坐标方程;

(Ⅱ)若直线l1 和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案