【题目】已知点H(﹣1,0),点P在y轴上,动点M满足PH⊥PM,且直线PM与x轴交于点Q,Q是线段PM的中点.
(1)求动点M的轨迹E的方程;
(2)若点F是曲线E的焦点,过F的两条直线l1 , l2关于x轴对称,且l1交曲线E于A、C两点,l2交曲线E于B、D两点,A、D在第一象限,若四边形ABCD的面积等于 ,求直线l1 , l2的方程.
【答案】
(1)解:设M(x,y),P(0,y1)(y1≠0),Q(x1,0),
=(﹣1,﹣y1), =(x1,﹣y1),
∵PH⊥PM,
∴﹣x1+y′2=0,即y12=x1,
又 ,则 ,可得:y2= (x≠0),
(2)解:由(1)抛物线的焦点F( ,0),则直线l1:x=my+ (m>0),
则 ,整理得y2﹣ y﹣ =0,
∴yA+yC= ,yAyC=﹣ ,
由题意,四边形ABCD是等腰梯形,
∴S=丨 丨=﹣2(yA﹣yC)2(yA+yC)=,
=﹣m[(yA+yC)2﹣4yAyC]=﹣ ,
由﹣ = ,
整理得:m3+m=10,(m+2)(m2﹣2m+5)=0,
则m2﹣2m+5>0,则m=﹣2,
∴直线l1,l2的方程y=﹣ x+ ,y= x﹣ .
【解析】(1)由题意可知: =(﹣1,﹣y1), =(x1 , ﹣y1),利用PH⊥PM,求动点M的轨迹E的方程;(2)由抛物线的焦点,设直线方程,代入椭圆方程,结合韦达定理,即可用m表示四边形ABCD的面积,求出m,即可求直线l1 , l2的方程.
科目:高中数学 来源: 题型:
【题目】已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).
(1)求双曲线C与其渐近线的方程;
(2)若斜率为1的直线l与双曲线C相交于A,B两点,且 (O为坐标原点).求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:函数f(x)=lg(ax2﹣ax+1)的定义域是R;命题 在第一象限为增函数,若“p∧q”为假,“p∨q”为真,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2是椭圆 (0<b<2)的左、右焦点,过F1的直线l交椭圆于A,B两点,若|AF2|+|BF2|最大值为5,则椭圆的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a1=10,S5≥S6 , 下列四个命题中,假命题是( )
A.公差d的最大值为﹣2
B.S7<0
C.记Sn的最大值为K,K的最大值为30
D.a2016>a2017
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣alnx﹣a. (Ⅰ)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)证明:对于a∈(0,e),f(x)在区间 上有极小值,且极小值大于0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+(1﹣2a)x﹣lnx(a∈R).
(1)求函数f(x)在区间[1,2]上的最大值;
(2)若A(x1 , y1),B(x2 , y2),C(x0 , y0)是函数f(x)图象上不同的三点,且x0= ,试判断f′(x0)与 之间的大小关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com