精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,函数g(x)=f[f(x)]-$\frac{1}{2}$的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x2+x3=$\frac{3}{4}$B.x2+x3=1C.x1+x2=$\frac{1}{4}$D.x1+x2=-$\frac{1}{4}$

分析 令f[f(x)]-$\frac{1}{2}$=0,从而可得f(x)=$\frac{\sqrt{2}}{2}$或f(x)=-1,再讨论分别求解,从而确定三个零点,从而解得.

解答 解:令f[f(x)]-$\frac{1}{2}$=0,
即1+log2f(x)-$\frac{1}{2}$=0或2f(x)-$\frac{1}{2}$=0,
解得,f(x)=$\frac{\sqrt{2}}{2}$或f(x)=-1,
若f(x)=$\frac{\sqrt{2}}{2}$,
则1+log2x=$\frac{\sqrt{2}}{2}$或2x=$\frac{\sqrt{2}}{2}$,
则log2x=$\frac{\sqrt{2}}{2}$-1或x=-$\frac{1}{2}$,
若f(x)=-1,
则1+log2x=-1,
故x=$\frac{1}{4}$,
故x1=-$\frac{1}{2}$,x2=$\frac{1}{4}$,log2x3=$\frac{\sqrt{2}}{2}$-1;
故选:D.

点评 本题考查了函数的零点与方程的根的关系应用及复合函数的性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)如果一个等比数列的前5项和等于4,前10项和等于16,求他的前15项和
(2)已知等比数列{an}的前n项和为Sn,且S1,2S2,3S3成等差数列,求{an}的公比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若y=x2+(log2N)x+log2N的最小值为$\frac{3}{4}$,求N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,0≤x<2}\\{1,x=2}\end{array}\right.$,其中[x]表示不超过x的最大整数,如,[-3•5]=-4,[1•2]=1,设n∈N*,定义函数fn(x)为:f1(x)=f(x),且fn(x)=f[fn-1(x)](n≥2),有以下说法:
①函数y=$\sqrt{x-f(x)}$的定义域为{x|$\frac{2}{3}$≤x≤2};
②设集合A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③f2015($\frac{8}{9}$)+f2016($\frac{8}{9}$)=$\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少包含有8个元素.
其中说法正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知三棱椎O一ABC,它的底面边长和侧棱长除OC外都是1,并且侧面OAB与底面ABC所成的角为a.
(1)求侧棱OC的长(表示为a的函数);
(2)问a=30°时,三棱锥的体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的焦点在坐标轴上,两焦点的中点为原点,且椭圆经过两点($\sqrt{6}$,1)和(-$\sqrt{3}$,-$\sqrt{2}$),求椭圆的方程、顶点坐标、焦点坐标和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是(  )
A.{x|2<x<3}B.{x|-1<x≤0}C.{x|0≤x<6}D.{x|x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l1:ax-2y=2a-4与l2:2x+a2y=2a2+4.
(1)求证:直线l1与l2都过同一个定点.
(2)当0<a<2时,l1,l2与两坐标轴围成一个四边形,问:a取何值时,这个四边形的面积最小?求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线y2=2px(p>0)的焦点为F,准线为l,准线l与坐标轴交于点M,过焦点且斜率为$\frac{\sqrt{2}}{2}$的直线交抛物线于A,B两点,且|AB|=12.
(I)求抛物线的标准方程;
(Ⅱ)若点P为该抛物线上的动点,求$\frac{|PF|}{|PM|}$的最小值.

查看答案和解析>>

同步练习册答案