精英家教网 > 高中数学 > 题目详情

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )

A. 110B. 114C. 124D. 125

【答案】B

【解析】

利用二项式系数对应的杨辉上三角形的第行,令,得到二项展开式的二项式系数的和,再结合等差、等比数列的求和公式,即可求解.

由题意,次二项式系数对应的杨辉三角形的第行,

,可得二项展开式的二项式系数的和

其中第1行为,第2行为,第3行为 以此类推,

即每一行的数字之和构成首项为1,公比为2的对边数列,

则杨辉三角形中前行的数字之和为

若除去所有为1的项,则剩下的每一行的数字的个数为

可以看成构成一个首项为1,公差为2的等差数列,则

,解得

所以前15项的和表示前7行的数列之和,减去所有的1,即

即前15项的数字之和为114,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数若对任意的实数x1x2x3,不等式fx1)+fx2>fx3)恒成立,则实数m的取值范围是( )

A.[14B.14C.D.[]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为F,准线为lAC上一点,已知以F为圆心,FA为半径的圆FlM.N.

1)若的面积为,求抛物线方程;

2)若A.M.F三点在同一直线m上,直线nm平行,且nC只有一个公共点,求坐标原点到直线nm距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数yfx)图象的对称轴和对称中心;

(Ⅱ)若函数的零点为x1x2,求cosx1x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面为矩形的四棱锥中,底面ABCDMN分别为ADPC中点.

(1)证明:平面PAB

(2)求异面直线MNAB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:

等级

标准果

优质果

精品果

礼品果

个数

10

30

40

20

(1)若将频率是为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率.(结果用分数表示)

(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.

方案:不分类卖出,单价为.

方案:分类卖出,分类后的水果售价如下:

等级

标准果

优质果

精品果

礼品果

售价(元/kg)

16

18

22

24

从采购单的角度考虑,应该采用哪种方案?

(3)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数xR,实数a[0,+∞),e=2.71828…是自然对数的底数,).

(Ⅰ)若fx)≥0在xR上恒成立,求实数a的取值范围;

(Ⅱ)若ex≥lnx+m对任意x0恒成立,求证:实数m的最大值大于2.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)若上的增函数,求的取值范围;

(2)若函数有两个极值点,判断函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市疾控中心流感监测结果显示,自月起,该市流感活动一度出现上升趋势,尤其是月以来呈现快速增长态势,截止目前流感病毒活动度仍处于较高水平,为了预防感冒快速扩散,某校医务室采取积极方式,对感染者进行短暂隔离直到康复假设某班级已知位同学中有位同学被感染,需要通过化验血液来确定感染的同学,血液化验结果呈阳性即为感染,呈阴性即未被感染.下面是两种化验方法: 方案甲:逐个化验,直到能确定感染同学为止;

方案乙:先任取个同学,将它们的血液混在一起化验若结果呈阳性则表明感染同学为这位中的位,后再逐个化验,直到能确定感染同学为止;若结果呈阴性则在另外位同学中逐个检测;

(1)求依方案甲所需化验次数等于方案乙所需化验次数的概率;

(2)表示依方案甲所需化验次数,表示依方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑那种化验方案最佳.

查看答案和解析>>

同步练习册答案