精英家教网 > 高中数学 > 题目详情
C选修4-4:坐标系与参数方程已知直线l的参数方程:
x=2t
y=1+4t
(t为参数),曲线C的极坐标方程:ρ=2
2
sin(θ+
π
4
),求直线l被曲线C截得的弦长.
分析:先将直线l的参数方程化成普通方程,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,将极坐标方程为曲线C的极坐标方程:ρ=2
2
sin(θ+
π
4
)化成直角坐标方程,最后利用直角坐标方程的形式,结合点到直线的距离公式及圆的几何性质求解即得.
解答:解:将直线l的参数方程化为普通方程为:y=2x+1(12分)
将圆C的极坐标方程化为普通方程为:(x-1)2+(y-1)2=2(4分)
从圆方程中可知:圆心C(1,1),半径r=
2

所以,圆心C到直线l的距离d=
|2×1-1+1|
5
=
2
5
5
2
=r(6分)
所以直线l与圆C相交. (7分)
所以直线l被圆C截得的弦长为:2
(
2
)
2
-
4
5
 
=
2
30
5
.(10分)
点评:本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A.选修4-1:几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC
交于点D.求证:ED2=EB•EC.
B.选修4-2:矩阵与变换
求矩阵M=
-14
26
的特征值和特征向量.
C.选修4-4:坐标系与参数方程
在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直线l与曲线C交于点.A,B,C,求线段AB的长.
D.选修4-5:不等式选讲
对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4;坐标系与参数方程
在直角坐标系xOy中,直线L的参数方程为
x=3-
2
2
t
y=
2
2
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线L交于点A,B,若点P的坐标为(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)选修4-4:坐标系与参数方程
在直角坐标系xoy中,直线l的参数方程为
x=a+4t
y=-1-2t
(t为参数)在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合)中,圆C的方程为ρ=2
2
cos(θ+
π
4
).
(Ⅰ)求圆心C到直线l的距离;
(Ⅱ)若直线l被圆C截得的弦长为
6
5
5
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东模拟)(选修4-4:坐标系与参数方程选讲)
在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C参数方程为
x=
3
cosθ
y= sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
4
)=2
2
.则曲线C上的点到直线l的最大距离是
3
2
3
2

查看答案和解析>>

同步练习册答案