精英家教网 > 高中数学 > 题目详情
椭圆+=1(a>b>0)的左、右顶点分别是A、B,左、右焦点分别是F1、F2,若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为(  )
(A)      (B)     (C)      (D) -2
B
由题意知,|AF1|=a-c,|F1F2|=2c,|F1B|=a+c.
由|AF1|、|F1F2|、|F1B|成等比数列可得:
(2c)2=(a-c)(a+c).
整理得a2=5c2,
∴e====.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

根据下列条件求椭圆的标准方程:
(1)两准线间的距离为,焦距为2
(2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为,过P点作长轴的垂线恰好过椭圆的一个焦点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆+=1(a>b>0)与抛物线y2=2px(p>0)有相同的焦点,P、Q是椭圆与抛物线的交点,若PQ经过焦点F,则椭圆+=1(a>b>0)的离心率为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B分别为椭圆+=1(a>b>0)的左、右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,若∠DBP=,则此椭圆的离心率为(  )
(A)      (B)     (C)      (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若·+·=8,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

经过椭圆的两个焦点,且与该椭圆有四个不同交点,设是其中的一个交点,若的面积为,椭圆的长轴长为,则    (为半焦距).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值为(  )
A.1B.C.2D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C1=1与双曲线C2=1共焦点,则椭圆C1的离心率e的取值范围为(  )
A.B.C.(0,1)D.

查看答案和解析>>

同步练习册答案