精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求函数的定义域和最小正周期;
(2)若,求的值.

(1)定义域为,最小正周期为;(2).

解析试题分析:(1)先根据三角函数解析式的结构特点对自变量列约束条件从而求出函数的定义域,然后利用辅助角公式将三角函数式化为的形式,最后利用周期公式求函数的最小正周期;(2)解法一是利用结合求出的值,进而代数求出的值;解法二是利用得到并结合求出的值,从而求出的值,进而代数求出的值.
试题解析:(1),解得
所以函数的定义域为

的最小正周期为
(2)解法1:由


解法2:由,得
代入,得
,又

考点:1.三角函数的定义域;2.三角函数的基本性质;3.同角三角函数的基本关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为奇函数,且相邻两对称轴间的距离为
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的周期和单调递增区间;
(2)设A,B,C为ABC的三个内角,若AB=1, ,求s1nB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为3,最小值为.
(1)求的值;
(2)当求时,函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).
(1)求f(x)的解析式;
(2)当x∈[]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,钝角(角对边为)的角满足.
(1)求函数的单调递增区间;
(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径 ,之间的夹角为.

(1)将图书馆底面矩形的面积表示成的函数.
(2)求当为何值时,矩形的面积有最大值?其最大值是多少?(用含R的式子表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin2ωx+sinωxsin(ω>0)的最小正周期为.
(1)写出函数f(x)的单调递增区间;
(2)求函数f(x)在区间上的取值范围.

查看答案和解析>>

同步练习册答案