精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的奇函数,且?x∈∈R,f(x)=f(x+4).当x∈∈(-2,0)时,f(x)=2x,则f(2015)-f(2013)的值为(  )
A、-
1
2
B、0
C、
1
2
D、1
考点:函数奇偶性的性质
专题:计算题,函数的性质及应用
分析:由题意得周期T=4,可得f(2015)-f(2013)=f(-1)-f(1)=2f(-1),运用已知区间上的解析式即可求解.
解答: 解:?x∈∈R,f(x)=f(x+4)可得周期T=4,
f(2015)-f(2013)=f(-1+4×504)-f(1+4×503)=f(-1)-f(1),
由f(x)是定义在R上的奇函数,
则f(-1)-f(1)=2f(-1),
由于x∈(-2,0)时,f(x)=2x,则f(-1)=2-1=
1
2

即有f(2015)-f(2013)=2×
1
2
=1.
故选D.
点评:本题考查函数的奇偶性和周期性的运用:求函数值,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U={x∈N|0≤x≤8},U=A∪B,A∩(∁UB)={1,3,5,7},则集合B=(  )
A、{0,2,4}
B、{0,2,4,6}
C、{0,2,4,6,8}
D、{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足(z-1)i=2+z,则z在复平面所对应点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+2ax+b,且f(1)=
5
2
,f(2)=
17
4
,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)为偶函数,x∈R,f(1)=
1
2
,f(x+2)=f(x)+f(2),则f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≤3
x+y≥0
x-y≥0
表示的平面区域的面积等于         (  )
A、
9
2
B、6
C、9
D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
y≤x
x+y≤1
y≥-1
且z=2x+y的最大值和最小值分别为m和n,则m-n等于(  )
A、8B、7C、6D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an},{bn},{cn}满足:bn=an-2an+1,cn=an+1+2an+2-2,n∈N*
(1)若数列{an}是等差数列,求证:数列{bn}是等差数列;
(2)若数列{bn},{cn}都是等差数列,求证:数列{an}从第二项起为等差数列;
(3)若数列{bn}是等差数列,试判断当b1+a3=0时,数列{an}是否成等差数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线
x=3cosθ
y=2
2
sinθ
(θ是参数)和定点A(0,
3
3
),F1,F2是圆锥曲线的左、右焦点.
(1)求经过点F2且垂直于直线AF1的直线l的参数方程;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF1的极坐标方程.

查看答案和解析>>

同步练习册答案