精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=ax2+bx+c和一次函数g(x)=﹣bx,其中a,b,c∈R且满足a>b>c,f(1)=0.
(1)证明:函数f(x)与g(x)的图象交于不同的两点;
(2)若函数F(x)=f(x)﹣g(x)在[2,3]上的最小值为9,最大值为21,试求a,b的值.

【答案】
(1)证明:由已知f(1)=0,得:a+b+c=0,

而a>b>c,

∴a>0,c<0,∴ac<0,

∴△=4b2﹣4ac>0;

因此函数f(x)与g(x)图象交于不同的两点;


(2)解:由题意知,F(x)=ax2+2bx+c

∴函数F(x)的图象的对称轴方程为x=﹣ ,又∵a+b+c=0

∴x= =1+ <1

又a>0

∴F(x)在[2,3]单增


【解析】(1)由已知中二次函数f(x)=ax2+bx+c和一次函数g(x)=﹣bx,分别求出a>0,c<0,易根据二次方程根的个数及△的关系,得到答案.(2)由题意可得F(x)=ax2+2bx+c,我们可根据二次函数在闭区间上的最值求法,结合函数F(x)在[2,3]上的最小值是9,最大值为21,构造关于a,b的方程,解方程即可求出答案.
【考点精析】本题主要考查了函数的最值及其几何意义和二次函数的性质的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

(1)讨论函数的单调区间;

(2)当时,设的两个极值点)恰为的零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a,b是常数,a>0且a≠1)在区间 上有最大值3,最小值为 .试求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1 , S3 , 3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an , cn= ,记数列{cn}的前n项和为Tn . 若对于任意的n∈N* , Tn≤λ(n+4)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且当x>1时,f(x)>0.
(1)判断函数f(x)在其定义域(0,+∞)上的单调性并证明;
(2)解不等式f(x)+f(x﹣2)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y= x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值是(
A.b<﹣1或b>2
B.b≤﹣2或b≥2
C.﹣1<b<2
D.﹣1≤b≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x3﹣3x﹣a有3个不同零点,则实数a的取值范围是(
A.(﹣2,2)
B.[﹣2,2]
C.(﹣∞,﹣1)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)如果a>0,函数在区间 上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式 恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=1﹣a,则(
A.f(x1)<f(x2
B.f(x1)=f(x2
C.f(x1)>f(x2
D.f(x1)与f(x2)的大小不能确定

查看答案和解析>>

同步练习册答案