精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,直线l经过点(1,0).若对任意的实数m,定直线l被圆C截得的弦长为定值,则直线l的方程为________.

2x+y-2=0
分析:根据圆的方程求出圆心和半径,由题意可得圆心C到直线l的距离为定值.当直线l的斜率不存在时,经过检验不
符合条件.当直线l的斜率存在时,直线l的方程为 y-0=k(x-1),圆心C到直线l的距离为定值求得k的值,从而求得
直线l的方程.
解答:圆C:x2+y2-(6-2m)x-4my+5m2-6m=0 即[x-(3-m)]2+(y-2m)2=9,表示以C(3-m,2m)为圆心,半径等于3的圆.
∵直线l经过点(1,0),对任意的实数m,定直线l被圆C截得的弦长为定值,则圆心C到直线l的距离为定值.
当直线l的斜率不存在时,直线l的方程为 x=1,圆心C到直线l的距离为|m-3-1|=|m-4|,不是定值.
当直线l的斜率存在时,设直线l的斜率为k,则直线l的方程为 y-0=k(x-1),即 kx-y-k=0.
此时,圆心C到直线l的距离 d== 为定值,与m无关,
故 k=-2,故直线l的方程为 y-0=-2(x-1),即 2x+y-2=0,
故答案为 2x+y-2=0.
点评:本题主要考查圆的标准方程,直线和圆的位置关系,点到直线的距离公式,体现了分类讨论的数学思想,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知以O为圆心的圆与直线l:y=mx+(3-4m),(m∈R)恒有公共点,且要求使圆O的面积最小.
(1)写出圆O的方程;
(2)圆O与x轴相交于A、B两点,圆内动点P使|
PA
|
|
PO
|
|
PB
|
成等比数列,求
PA
PB
的范围;
(3)已知定点Q(-4,3),直线l与圆O交于M、N两点,试判断
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此时直线l的方程,若不存在,给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足
MB
OA
MA
AB
=
MB
BA
,M点的轨迹为曲线C.
(Ⅰ)求C的方程;
(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(1,0),B(0,1),点C在第二象限内,∠AOC=
6
,且|OC|=2,若
OC
OA
OB
,则λ,μ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=2cosθ,则圆心C到直线l的距离为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点M(3
2
2
),椭圆的离心率e=
2
2
3

(1)求椭圆C的方程;
(2)过点M作两直线与椭圆C分别交于相异两点A、B.若∠AMB的平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案