精英家教网 > 高中数学 > 题目详情
给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)
分析:通过特称命题的否定判断①的正误;通过对数的运算性质判断②的正误;利用正切函数的对称中心判断③的正误;通过导数的运算判断④的正误即可.
解答:解:①命题“?x0∈R,2x0≤0”的否定是“.?x∈R,2x>0”;满足特称命题的否定是全称命题,正确;
log2sin
π
12
+log2cos
π
12
=-2;因为log2sin
π
12
+log2cos
π
12
=log2(sin
π
12
•cos
π
12
)
=log2(
1
2
sin
π
6
)
=-2,所以正确.
③由函数y=tan
x
2
,可知
x
2
=
2
,k∈Z,即x=kπ,k∈Z,函数值为0,所以函数的对称中心为(kπ,0),k∈Z,正确;
④[cos(3-2x)]=2sin(3-2x),所以④不正确.
所以①②③正确.
故选C.
点评:本题考查特称命题与全称命题的否定关系的应用,对数的运算法则,二倍角的正弦函数,正切函数的对称中心的求法,函数的导数的应用,考查基本知识的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在[-2,2]上的函数y=f(x)和y=g(x),其图象如图所示:给出下列四个命题:
①方程f[g(x)]=0有且仅有6个根    ②方程g[f(x)]=0有且仅有3个根
③方程f[f(x)]=0有且仅有5个根    ④方程g[g(x)]=0有且仅有4个根
其中正确命题的序号(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的边分别为a,b,c,若实数λ,μ满足a+b=λc,ab=μc2,则称数对(λ,μ)为△ABC的“Hold对”,现给出下列四个命题:
①若△ABC的“Hold对”为(2,1),则△ABC为正三角形;
②若△ABC的“Hold对”为(2,
8
9
)
,则△ABC为锐角三角形;
③若△ABC的“Hold对”为(
7
6
1
3
)
,则△ABC为钝角三角形;
④若△ABC是以C为直角顶点的直角三角形,则以“Hold对”(λ,μ)为坐标的点构成的图形是矩形,其面积为
2
-1
2

其中正确的命题是
①③
①③
(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题
①命题“?x∈R,cosx>0”的否定是“?x0∈R,cosx0≤0”
②若0<a<1,则方程x2+ax-3=0只有一个实数根;
③对于任意实数x,有f(-x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0;
④一个矩形的面积为S,周长为l,则有序实数对(6,8)可作为(S,l)取得的一组实数对,其正确命题的序号是
①③
①③
.(填所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)和y=g(x)的定义域均为{x|-2≤x≤2},其图象如图所示:

给出下列四个命题:
①函数y=f[g(x)]有且仅有6个零点;  
②函数y=g[f(x)]有且仅有3个零点;
③函数y=f[f(x)]有且仅有5个零点;  
④函数y=g[f(x)]有且仅有4个零点,其中正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省文登市高三上学期期中统考理科数学试卷(解析版) 题型:选择题

给出下列四个命题,其错误的是(     )

①已知是等比数列的公比,则“数列是递增数列”是“”的既不充分也不必要条件;

②若定义在上的函数是奇函数,则对定义域内的任意必有

③若存在正常数满足,则的一个正周期为

④函数图像关于对称.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

同步练习册答案
关 闭