精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

【答案】(1)答案见解析(2)

【解析】

1)先对函数进行求导得,对分成两种情况讨论,从而得到相应的单调区间;

2)对函数求导得,从而有,三个方程中利用得到.将不等式的左边转化成关于的函数,再构造新函数利用导数研究函数的最小值,从而得到的取值范围.

解:(1)由

时,则,故上单调递减;

时,令

所以上单调递减,在上单调递增.

综上所述:当时,上单调递减;

时,上单调递减,在上单调递增.

2)∵

,

,∴

解得.

.

,

上单调递减;

时,.

,即所求的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biē nào].某学校科学小组为了节约材料,拟依托校园内垂直的两面墙和地面搭建一个堑堵形的封闭的实验室是边长为2的正方形.

1)若是等腰三角形,在图2的网格中(每个小方格都是边长为1的正方形)画出堑堵的三视图;

2)若上,证明:,并回答四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;

3)当阳马的体积最大时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;为空间四点,且向量不构成空间的一个基底,那么点一定共面;已知向量是空间的一个基底,则向量,也是空间的一个基底。其中正确的命题是( )

A. ①②B. ①③C. ②③D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱锥PABCD的底面ABCD是矩形,PA⊥平面ABCDPA=AD=2BD=.

1)求证:BD⊥平面PAC

2)求二面角PCDB余弦值的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,四边形都为矩形.

1)若,证明:直线平面

2)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

)若是函数的极值点,讨论函数的单调性;

)若上无最小值,且上是单调增函数,求的取值范围,并由此判断曲线与曲线交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中Mp及图中a的值;

(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和

1)求数列{an}的通项公式an

2)设数列{bn}的前n项和为Tn,满足b11

①求数列{bn}的通项公式bn

②若存在pqkN*pqk,使得ambqamanbpanbk成等差数列,求m+n的最小值.

查看答案和解析>>

同步练习册答案