精英家教网 > 高中数学 > 题目详情

已知函数时, 只有一个实根;当k∈(0,4)时,只有3个相异实根,现

给出下列4个命题: ①有一个相同的实根;

有一个相同的实根;

的任一实根大于的任一实根;

的任一实根小于任一实根.

其中正确命题的序号是

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
[x2-2(2a-1)x+8](a∈R)
(1)若使函数f(x)在[a,+∞﹚上为减函数,求a的取值范围;
(2)当a=
3
4
时,求y=f(sin(2x-
π
3
)
),x∈[
π
12
π
2
]的值域.
(3)若关于x的方程f(x)=-1+log
1
2
(x+3)
在[1,3]上有且只有一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关一模)已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f'(x).
(1)当a=
1
3
时,若不等式f′(x)>-
1
3
对任意x∈R恒成立,求b的取值范围;
(2)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程f(x)=-
1
4
t
在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关一模)已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f′(x).
(1)当a=
1
3
时,若不等式f′(x)>-
1
3
对任意x∈R恒成立,求b的取值范围;
(2)求证:函数y=f′(x)在(-1,0)内至少存在一个零点;
(3)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程f(x)=-
1
4
t在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)已知函数f(x)=x3+3ax-1
(1)若函数y=f(x)在x=-1时有与x轴平行的切线,求f(x)的表达式;
(2)设g(x)=
13
[af'(x)-3a2+3],其中f-1(x)是f(x)的导函数,若函数g(x)的图象与直线y=x相切,求a的值;
(3)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)已知函数f(x)=
a
x
+lnx
,g(x)=
1
2
bx2-2x+2
,a,b∈R.
(1)求函数f(x)的单调区间;
(2)记函数h(x)=f(x)+g(x),当a=0时,h(x)在(0,1)上有且只有一个极值点,求实数b的取值范围;
(3)记函数F(x)=|f(x)|,证明:存在一条过原点的直线l与y=F(x)的图象有两个切点.

查看答案和解析>>

同步练习册答案