精英家教网 > 高中数学 > 题目详情
F1,F2是椭圆+y2=1的左右焦点,点P在椭圆上运动.则的最大值是________.
1
设P(x,y),依题意得F1(-,0),F2(,0),=(--x)(-x)+y2=x2+y2-3=x2-2.∵0≤x2≤4,∴-2≤x2-2≤1.∴的最大值是1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若斜率为的直线l与椭圆=1(a>b>0)有两个不同的交点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1(a>b>0)的离心率e=,连结椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆=1的焦距为2,求椭圆上的一点到两个焦点的距离之和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线的焦距为4,那么的值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:+=1(a>0,b>0)的右焦点为F(3,0),且点(-3,)在椭圆C上,则椭圆C的标准方程为    .

查看答案和解析>>

同步练习册答案