【题目】已知函数f(x)=x2+m与函数 的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是( )
A.
B.
C.
D.[2﹣ln2,2]
【答案】D
【解析】解:由已知,得到方程x2+m=ln +3xm=﹣lnx+3x﹣x2在[ ,2]上有解. 设f(x)=﹣lnx+3x﹣x2 ,
求导得:f′(x)=﹣ +3﹣2x=﹣ =﹣ ,
∵ ≤x≤2,
令f′(x)=0,解得x= 或x=1,
当f′(x)>0时, <x<1函数单调递增,
当f′(x)<0时,1<x<2函数单调减,
∴在x=1有唯一的极值点,
∵f( )=ln2+ ,f(2)=﹣ln2+2,f(x)极大值=f(1)=2,且知f(2)<f( ),
故方程m=﹣lnx+3x﹣x2在[ ,2]上有解等价于2﹣ln2≤m≤2.
从而m的取值范围为[2﹣ln2,2].
故选:D.
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①若 , 是第一象限角且 ,则 ;
②函数 在上是减函数;
③ 是函数 的一条对称轴;
④函数 的图象关于点 成中心对称;
⑤设 ,则函数 的最小值是,其中正确命题的序号为 __________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.
(1)求通项an及Sn;
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是( )
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电脑公司有6名产品推销员,其中工作年限与年推销金额数据如下表:
推销员编号 | 1 | 2 | 3 | 4 | 5 |
工作年限/年 | 3 | 5 | 6 | 7 | 9 |
推销金额/万元 | 2 | 3 | 4 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)求年推销金额关于工作年限的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为 和 ,且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数ξ的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过定点P(1,1),且倾斜角为 ,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为 .
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA||PB|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com