精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+m与函数 的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是(
A.
B.
C.
D.[2﹣ln2,2]

【答案】D
【解析】解:由已知,得到方程x2+m=ln +3xm=﹣lnx+3x﹣x2在[ ,2]上有解. 设f(x)=﹣lnx+3x﹣x2
求导得:f′(x)=﹣ +3﹣2x=﹣ =﹣
≤x≤2,
令f′(x)=0,解得x= 或x=1,
当f′(x)>0时, <x<1函数单调递增,
当f′(x)<0时,1<x<2函数单调减,
∴在x=1有唯一的极值点,
∵f( )=ln2+ ,f(2)=﹣ln2+2,f(x)极大值=f(1)=2,且知f(2)<f( ),
故方程m=﹣lnx+3x﹣x2在[ ,2]上有解等价于2﹣ln2≤m≤2.
从而m的取值范围为[2﹣ln2,2].
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①若 是第一象限角且 ,则

②函数上是减函数;

是函数 的一条对称轴;

④函数 的图象关于点 成中心对称;

⑤设 ,则函数 的最小值是,其中正确命题的序号为 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.

(1)求通项anSn

(2)设{bnan}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是(
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电脑公司有6名产品推销员,其中工作年限与年推销金额数据如下表:

推销员编号

1

2

3

4

5

工作年限/年

3

5

6

7

9

推销金额/万元

2

3

4

5

6

(1)请画出上表数据的散点图;

(2)求年推销金额关于工作年限的线性回归方程;

(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.

,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为 ,且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知公比为整数的正项等比数列满足:

1)求数列的通项公式;

2)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过定点P(1,1),且倾斜角为 ,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

同步练习册答案