精英家教网 > 高中数学 > 题目详情
已知n是正整数,数列{an }的前n项和为Sn,a1=1,数列{
1an
}的前n项和为Tn,数列{ Tn }的前n项和为Pn,Sn是nan与an的等差中项•
(1)求Sn
(2)证明:(n+1)Tn+1-nTn-1=Tn
(3)是否存在数列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有数列{bn},若不存在,请说明理由.
分析:(1)由题设知2Sn=nan+an,2Sn+1=(n+1)an+1+an+1,所以
an+1
an
=
n+1
n
an=
an
an-1
×
an-1
an-2
×…×
a2
a
× a1=n
,由此能求出Sn=
n(n+1)
2

(2)由(n+1)Tn+1-nTn-1=n(Tn+1-Tn)+Tn+1-1=
n
n+1
+Tn+1-1
=
n
n+1
+Tn+
1
n+1
-1=Tn
,知Tn=(n+1)Tn+1-nTn-1.
(3)由Tn=(n+1)Tn+1-nTn-1,知Pn=(n+1)Tn-n,故存在数列{bn},使Pn=(bn+1)Tn-bn,且bn=n.
解答:解:(1)∵Sn是nan与an的等差中项,
∴2Sn=nan+an
∴2Sn+1=(n+1)an+1+an+1
∴2Sn+1-2Sn=2an+1=(n+1)an+1+an+1-nan-an
化简,得
an+1
an
=
n+1
n

an=
an
an-1
×
an-1
an-2
×…×
a2
a
× a1=n

∴{an}是等差数列,
Sn=
n(n+1)
2

(2)证明:∵(n+1)Tn+1-nTn-1=n(Tn+1-Tn)+Tn+1-1
=
n
n+1
+Tn+1-1

=
n
n+1
+Tn+
1
n+1
-1=Tn

∴Tn=(n+1)Tn+1-nTn-1.
(3)解:∵Tn=(n+1)Tn+1-nTn-1,
∴T1+T2+…+Tn=[2T2-T1-1]+[3T3-2T2-1]+…+[(n+1)Tn+1-nTn-1]
=(n+1)Tn+1-T1-n
=(n+1)Tn-n,
∴Pn=(n+1)Tn-n
∴存在数列{bn},使Pn=(bn+1)Tn-bn,且bn=n.
点评:本题考查数列的性质和应用,解题时要认真审题,注意数列的前n项和的求法和数列的证明,解题过程中合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知n是正整数,数列{art }的前n项和为Sna1=1,数列{
1
an
}的前n项和为Tn数列{ Tn }的前n项和为Pn,Sn,是nan,an的等差中项•
(I )求
lim
n→∞
Sn
n2

(II)比较(n+1)Tn+1-nTn与1+Tn大小;
(III)是否存在数列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有数列{bn},若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n是正整数,数列{an}的前n项和为Sn,对任何正整数n,等式Sn=-an+
12
(n-3)都成立.
(I)求数列{an}的首项a1
(II)求数列{an}的通项公式;
(III)设数列{nan}的前n项和为Tn,不等式2Tn≤(2n+4)Sn+3是否对一切正整数n恒成立?若不恒成立,请求出不成立时n的所有值;若恒成立,请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n是正整数,数列{an}的前n项和为Sn,a1=1,Sn是nan与an的等差中项,则an等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n是正整数,数列{an}的前n项和为Sn,且满足Sn=-an+
12
(n-3),数列(nan)的前n项和为Tn
(1)求数列{an}的通项公式;
(2)求Tn
(3)设An=2Tn,Bn=(2n+4)Sn+3,试比较An与Bn的大小.

查看答案和解析>>

同步练习册答案