精英家教网 > 高中数学 > 题目详情
不同的直线a, b, c及不同的平面α,β,γ,下列命题正确的是(    )
A.若aα,bα,c⊥a, c⊥b 则c⊥α
B.若bα, a//b则 a//α
C.若a⊥α, b⊥α 则a//b
D.若a//α,α∩β=b则a//b
C

试题分析: A、若a?α,b?α,c⊥a,c⊥b,若在平面α内直线a平行直线b,则c不一定垂直α,故A错误;
B、已知b?α,a∥b,则a∥α或a?α,故B错误;
选项C若a⊥α, b⊥α 则a//b,那么根据垂直于同一个平面的两直线平行得到成立。
选项D中,若a//α,α∩β=b 则a//b,只有b在平面β内时成立故错误。选C.
点评:解决该试题的关键是熟悉空间中直线与平面垂直的判定定理和线线平行的判定定理,对四个选项进行一一判断。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题11分)如图,在四棱锥中,平面,.

(1)证明:平面 
(2)求和平面所成角的正弦值
(3)求二面角的正切值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(20) (本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.

(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在直三棱柱(侧棱垂直于底面的棱柱)中, , , , ,点的中点.

(Ⅰ) 求证:∥平面
(Ⅱ)求AC1与平面CC1B1B所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。
(1)求直线PC与平面PAD所成角的余弦值;(6分)
(2)求证:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,棱长为a的正方体ABCD-A1B1C1D1中,E、F、G分别为A1D1、A1B1、BC的中点,

(1)求证:GC1//面AEF
(2)求:直线GC1到面AEF的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示三条不同的直线,表示平面,给出下列命题:
①若,则;②若,则
③若,则;④若,则;则其中正确的是(   )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a,b是两条不重合的直线,是两个不重合的平面,下列命题中正确的是( )
A.,则
B.a,,则
C.,则
D.当,且时,若,则

查看答案和解析>>

同步练习册答案