精英家教网 > 高中数学 > 题目详情
若△ABC能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.不能确定
分△ABC的直线只能过一个顶点且与对边相交,如直线AD(点D在BC上),则∠ADB+∠ADC=π,
若∠ADB为钝角,则∠ADC为锐角.
而∠ADC>∠BAD,∠ADC>∠ABD,△ABD与△ACD不可能相似,与已知不符,
只有当∠ADB=∠ADC=∠BAC=
π
2
时,才符合题意,
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

阅读与理解:asinx+bcosx=
a2+b2
sin(x+φ)
给出公式:
我们可以根据公式将函数g(x)=sinx+
3
cosx
化为:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3
)

(1)根据你的理解将函数f(x)=
3
2
sinx+
3
2
cosx
化为f(x)=Asin(ωx+φ)的形式.
(2)求出上面函数f(x)的最小正周期、对称中心及单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的最小正周期为
(1)求的值;
(2)若函数的图像是由的图像向右平移个单位长度得到,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中向量
(1)求的单调递增区间;
(2)在中,分别是角的对边,已知的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下面各等式的结构规律,提出一个猜想______.
(1)sin210°+sin250°+sin10°•sin50°=0.75
(2)sin26°+sin254°+sin6°•sin54°=0.75
(3)sin222°+sin238°+sin22°•sin38°=0.75
(4)sin215°+sin245°+sin15°•sin45°=0.75.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知tanα=
1
3
,求
1
2sinαcosα+cos2α
的值;
(2)化简:
tan(π-α)cos(2π-α)sin(-α+
3
2
π)
cos(-α-π)sin(-π-α)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,cosA=-
3
2
,则△ABC一定是(  )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.锐角三角形或钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(cos
3
2
x,sin
3
2
x)
b
=(cos
x
2
,-sin
x
2
)
,且x∈[
π
2
3
2
π]

(1)求|
a
+
b
|
的取值范围;
(2)求函数f(x)=
a
b
-|
a
+
b
|
的最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)化简: 
(2)若,求的值.

查看答案和解析>>

同步练习册答案