精英家教网 > 高中数学 > 题目详情
17.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在线段AD上,AG=$\frac{1}{3}$GD,BG⊥GC,BG=GC=2,E是BC的中点,四面体P-BCG的体积为$\frac{8}{3}$.
(1)求异面直线GE与PC所成角的余弦值;
(2)棱PC上是否存在一点F,使DF⊥GC,若存在,求$\frac{PF}{FC}$的值,若不存在,请说明理由.

分析 (1)由已知考查PG,在平面ABCD内,过C点作CH∥EG交AD于H,连结PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.在△PCH中,由余弦定理即可求得cos∠PCH的值.
(2)在平面ABCD内,过D作DM⊥GC,M为垂足,连结MF,可证FM∥PG,由GM⊥MD得:GM=GD•cos45°=$\frac{3}{2}$,由DF⊥GC,即可求得$\frac{PF}{FC}$的值.

解答 解:(1)由已知${V}_{P-BGC}={\frac{1}{3}S}_{△BCG}•PG$=$\frac{1}{3}•\frac{1}{2}BG•GC•PG$=$\frac{8}{3}$,
∴PG=4,
在平面ABCD内,过C点作CH∥EG交AD于H,连结PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.
在△PCH中,CH=$\sqrt{2}$,PC=$\sqrt{20}$,PH=$\sqrt{18}$,
由余弦定理得,cos∠PCH=$\frac{\sqrt{10}}{10}$.
(2)在平面ABCD内,过D作DM⊥GC,M为垂足,连结MF,又因为DF⊥GC,
∴GC⊥平面MFD,∴GC⊥FM,
由平面PGC⊥平面ABCD,
∴FM⊥平面ABCD,
∴FM∥PG,
由GM⊥MD得:GM=GD•cos45°=$\frac{3}{2}$,
∵$\frac{PF}{FC}=\frac{GM}{MC}=\frac{\frac{3}{2}}{\frac{1}{2}}=3$,
∴由DF⊥GC,可得$\frac{PF}{FC}=3$.

点评 本题主要考查了直线与平面垂直的性质,异面直线及其所成的角,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{m}$=(cosα,1-sinα),$\overrightarrow{n}$=(-cosα,sinα)(α∈R).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求角α的值;
(2)若|$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{3}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在(1+x+x2n=D${\;}_{n}^{0}$+D${\;}_{n}^{1}$x+D${\;}_{n}^{2}$x2+…+D${\;}_{n}^{r}$xr+…+D${\;}_{n}^{2n-1}$x2n-1+D${\;}_{n}^{2n}$x2n的展开式中,把D${\;}_{n}^{0}$,D${\;}_{n}^{1}$,D${\;}_{n}^{2}$,…,D${\;}_{n}^{2n}$叫做三项式系数.
(1)当n=2时,写出三项式系数D${\;}_{2}^{0}$,D${\;}_{2}^{1}$,D${\;}_{2}^{2}$,D${\;}_{2}^{3}$,D${\;}_{2}^{4}$的值;
(2)类比二项式系数性质C${\;}_{n+1}^{m}$=C${\;}_{n}^{m-1}$+C${\;}_{n}^{m}$(1≤m≤n,m∈N,n∈N),给出一个关于三项式系数D${\;}_{n+1}^{m+1}$(1≤m≤2n-1,m∈N,n∈N)的相似性质,并予以证明;
(3)求D${\;}_{2015}^{0}$C${\;}_{2015}^{0}$-D${\;}_{2015}^{1}$C${\;}_{2015}^{1}$+D${\;}_{2015}^{2}$C${\;}_{2015}^{2}$-…+(-1)kD${\;}_{2015}^{k}$C${\;}_{2015}^{k}$+…+D${\;}_{2015}^{2014}$C${\;}_{2015}^{2014}$-D${\;}_{2015}^{2015}$C${\;}_{2015}^{2015}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在(2x2-$\frac{1}{3\sqrt{x}}$)n的展开式中含常数项,则正整数n的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三棱锥O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,若OA=OB=a,OC=b,D是该三棱锥外部(不含表面)的一点,则下列命题正确的是(  )
①存在无数个点D,使OD⊥面ABC;
②存在唯一点D,使四面体ABCD为正三棱锥;
③存在无数个点D,使OD=AD=BD=CD;
④存在唯一点D,使四面体ABCD有三个面为直角三角形.
A.①③B.①④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知某几何体的三视图(单位:cm)如图所示,则该几何体表面积是124+2$\sqrt{34}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=cosx•\sqrt{\frac{1+sinx}{1-sinx}}+sinx•\sqrt{\frac{1+cosx}{1-cosx}}$
(1)当$x∈(0,\frac{π}{2})$时,化简f(x)的解析式并求f(x)的对称轴和对称中心;
(2)当$x∈(π,\frac{3π}{2})$时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
 ①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
 ③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
当f(x)=ex时,上述结论中正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知F1,F2分别为双曲线的左、右焦点,P为双曲线右支上的任意一点,若$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为8a,则双曲线的离心率e的取值范围是(  )
A.(1,+∞)B.(1,2]C.(1,$\sqrt{3}$]D.(1,3]

查看答案和解析>>

同步练习册答案