精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+4x-5,g(x)=ax+3,若不存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
[-3,
3
5
]
[-3,
3
5
]
分析:函数f(x)的图象开口向上,对称轴为x=-2,g(x)=ax+3的图象恒过定点(0,3),利用这两个定点,结合图象解决.
解答:解:由于函数f(x)的图象开口向上,对称轴为x=-2,
且f(1)=0,f(-5)=0,故若存在x0∈R,使得f(x0)<0,必有-5<x0<1
又由g(x)=ax+3中恒过(0,3),
故由函数的图象知:
①若a=0时,g(x)=3恒大于0,显然不存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,故a=0.
②若a>0时,g(x0)<0?x0<-
3
a

若不存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则必有-
3
a
≤-5
,解得a≤
3
5
,故0<a≤
3
5

③若a<0时,g(x0)<0?x0>-
3
a

若不存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则必有-
3
a
≥1
,解得a≥-3,故-3≤a<0.
综上可知,实数a的取值范围是:-3≤a≤
3
5

故答案为:[-3,
3
5
]
点评:本题主要考查了二次函数和一次函数的图象和性质,不等式恒成立和能成立问题的解法,分类讨论的思想方法和转化化归的思想方法,充分挖掘题目中的隐含条件,结合图象法,可使问题的解决来得快捷.本题告诉我们,图解法对于解决存在性问题大有帮助.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案