精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{x+1,x≤0}\end{array}\right.$,若f(a)-f(1)=0,则实数a的值等于(  )
A.-1或0B.-1或1C.1或0D.1

分析 由已知条件利用分段函数的性质得f(a)=f(1)=1,当a>0时,f(a)=a2=1;当a≤0时,f(a)=a+1=1.由此能求出实数a的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{x+1,x≤0}\end{array}\right.$,f(a)-f(1)=0,
∴f(a)=f(1)=1,
当a>0时,f(a)=a2=1,解得a=1或a=-1(舍),
当a≤0时,f(a)=a+1=1,解得a=0,
∴实数a的值等于1或0.
故选:C.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(文)已知全集U=R,非空集合A={x|x2-5x+6<0},B={x|(x-a)(x-a2-1)<0}.
(1)当a=$\frac{5}{2}$时,求∁UB∩A;
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,$sin(A+\frac{π}{6})+2cos(B+C)=0$.则A=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在四边形ABCD中,$\overrightarrow{AC}$=(3,2),$\overrightarrow{BD}$=(-4,6),则四边形ABCD面积为(  )
A.2$\sqrt{13}$B.52C.$\sqrt{13}$D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.写出与下列角终边相同的角的集合:
(1)30°
(2)210°
(3)-45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x|(x-4).
(1)用分段函数表示函数f(x),并作出y=f(x)的图象;
(2)利用图象试确定k的取值范围,使方程f(x)-k=0有一个解;有两个解;有三个解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a=$\sqrt{2}$,b=2$\sqrt{2}$.求值:
(1)$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$(a-b)-$\sqrt{(a+b)^{2}}$;
(2)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}\root{3}{\frac{b}{a}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知一次函数y=f(x)满足f(x+1)=x+3a,且f(a)=3.
(1)求函数f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+1在(0,2)上具有单调性,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数y=sinx的图象上所有的点向右平移$\frac{π}{3}$单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f(x)的图象,则函数y=f(x)的图象的对称中心不可能是(  )
A.(-$\frac{π}{3}$,3)B.($\frac{2π}{3}$,0)C.($\frac{8π}{3}$,0)D.($\frac{20π}{3}$,0)

查看答案和解析>>

同步练习册答案