精英家教网 > 高中数学 > 题目详情
6.如图,在四棱锥P-ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC的中点.
(Ⅰ)证明:ND∥面PAB;
(Ⅱ)求三棱锥N-ACD的体积.

分析 (Ⅰ)取PB中点M,连结AM,MN,推导出四边形AMND是平行四边形,从而ND∥AM,由此能证明ND∥面PAB.
(Ⅱ)N到面ABCD的距离等于P到面ABCD的距离的一半,且PA⊥面ABCD,PA=4,从而三棱锥N-ACD的高是2,由此能求出三棱锥N-ACD的体积.

解答 (本小题满分12分)
证明:(Ⅰ)如图,取PB中点M,连结AM,MN.
∵MN是△BCP的中位线,∴$MN\underline{\underline{∥}}\frac{1}{2}BC$.    (2分)
依题意得,$AD\underline{\underline{∥}}\frac{1}{2}BC$,则有$AD\underline{\underline{∥}}MN$(3分)
∴四边形AMND是平行四边形,∴ND∥AM(4分)
∵ND?面PAB,AM?面PAB,
∴ND∥面PAB(6分)
解:(Ⅱ)∵N是PC的中点,
∴N到面ABCD的距离等于P到面ABCD的距离的一半,且PA⊥面ABCD,PA=4,
∴三棱锥N-ACD的高是2.(8分)
在等腰△ABC中,AC=AB=3,BC=4,BC边上的高为$\sqrt{{3^2}-{2^2}}=\sqrt{5}$.(9分)
BC∥AD,∴C到AD的距离为$\sqrt{5}$,
∴${S_{△ADC}}=\frac{1}{2}×2×\sqrt{5}=\sqrt{5}$.(11分)
∴三棱锥N-ACD的体积是$\frac{1}{3}×\sqrt{5}×2=\frac{2}{3}\sqrt{5}$.(12分)

点评 本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,$|{\overrightarrow a}$|=2,$|{\overrightarrow b}$|=6,则2$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$方向上的投影为(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-alnx在区间(1,2]内是增函数,g(x)=x-a$\sqrt{x}$在区间(0,1)内是减函数.
(1)求f(x)、g(x)的表达式;
(2)求证:当x>0时,方程f(x)-g(x)=x2-2x+3有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线x2-2y2=K的焦距是6,则K的值是(  )
A.±24B.±6C.24D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三个点A(0,0),B(2,0),C(4,2),则△ABC的外心的纵坐标是(  )
A.$\frac{3}{2}$B.3C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程x-2=($\frac{1}{2}$)x的解的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列函数(1)y=x2+|x|+2,x≤0,(2)y=t2-t+2,t≤0,(3)y=x2-|x|+2,x≥0,$(4)y={(\sqrt{-x})^2}+\sqrt{x^4}$+2,其中与函数y=x2-x+2,x≤0相等的有(  )
A.(1)B.(1)(2)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x2+y2+z2=1,则x+2y+3z的最小值为-$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:
甲是中国人,还会说英语.
乙是法国人,还会说日语.
丙是英国人,还会说法语.
丁是日本人,还会说汉语.
戊是法国人,还会说德语.
则这五位代表的座位顺序应为(  )
A.甲丙丁戊乙B.甲丁丙乙戊C.甲乙丙丁戊D.甲丙戊乙丁

查看答案和解析>>

同步练习册答案