精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点

       (1)求满足条件的椭圆方程和抛物线方程;

       (2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

 

【答案】

(1)椭圆和抛物线的方程分别为

(2)存在,有4个点,理由见解析。

【解析】 对于(1)重点要抓住抛物线在点G的切线经过椭圆的右焦点F1,故先要设法求出点G及抛物线在点G的切线,再求F1,利用同一个F1求出b即可;对于(2)首先要注意直角三个角均有可能为直角,不要遗漏,对于为直角的情况可利用向量或斜率求解;

(1)由

G点的坐标为

过点G的切线方程为

点的坐标为,由椭圆方程得点的坐标为

即椭圆和抛物线的方程分别为

(2)轴的垂线与抛物线只有一个交点,为直角的只有一个,同理为直角的只有一个。

若以为直角,设点坐标为两点的坐标分别为

关于的二次方程有一解,有两解,即以为直角的有两个,因此抛物线上存在四个点使得为直角三角形。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案