精英家教网 > 高中数学 > 题目详情
设函数,已知此函数的图象在x=2处的切线的斜率为2.
(1)求函数f(x)的解析式;
(2)若x∈[2,4],求函数的值域;
(3)设,函数g(x)=x2-8ax-2a,x∈[2,4].若对于任意的x1∈[2,4],总存在x∈[2,4]使得g(x)=f(x1)成立,求实数a的取值范围.
【答案】分析:(1)根据函数f(x)图象在x=2处的切线的斜率为2,求导,令f′(2)=2,求得b的值,从而求得函数f(x)的解析式;
(2)求函数f(x)在(2,4)上的极值,再与f(2)、f(4)比较大小,求得函数的值域;(3)由对于任意的x1∈[2,4],总存在x∈[2,4]使得g(x)=f(x1)成立,函数g(x)在区间[2,4]上的最大值不小于函数f(x)的最大值,函数g(x)在区间[2,4]上最小值不小于函数f(x)的最小值,转化为求函数g(x)的最值问题.
解答:解:(1)∵f′(2)=2   
∴b=4  
(2)
即:-2x2+8x-6=0且x≠1
解得:x=3,x=1(舍)

f(x)最大值:
f(x)最小值:比较f(2)=0,f(4)=,所以最小值为f(2)=0;
(3)g(x)=x2-8ax-2a=(x-4a)2-16a2-2a
,x∈[2,4].
∴g(x)min=g(2)=4-18a,
g(x)max=g(4)=16-34a,
∵对于任意的x1∈[2,4],总存在x∈[2,4]使得g(x)=f(x1)成立,
,解得
∴a的取值范围是
点评:考查导数的几何意义,和利用导数研究函数的极值、最值问题,特别是(3)的设问方式,增加了题目的难度,体现了转化的思想方法,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2x3-5x,g(x)=x3+ax2+bx+c,x∈(0,+∞),设(1,f(1))是曲线y=f(x)与y=g(x)的一个公共点,且在此点处的切线相同.记g(x)的导函数为g'(x),对任意x∈(0,+∞)恒有g'(x)>0.
(1)求a,b,c之间的关系(请用b表示a、c);
(2)求b的取值范围;
(3)证明:当x∈(0,+∞)时,f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

某科技公司遇到一个技术难题,紧急成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关,同时决定对攻关期满就攻克技术难题的小组给予奖励.已知此技术难题在攻关期满时被甲小组攻克的概率为
2
3
,被乙小组攻克的概率为
3
4

(1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及Eξ;
(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数f(x)=|η-
7
2
|x在定义域内单调递减”为事件C,求事件C的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),向量
n
与向量
m
的夹角为
4
,且
m
n
=-1

(1)求向量
n

(2)设向量
a
=(1,0),向量
b
=(cosx,2cos2(
π
3
-
x
2
))
,若
a
n
=0,记函数f(x)=
m
•(
n
+
b
)
,求此函数的单调递增区间和对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式,已知此函数的图象在x=2处的切线的斜率为2.
(1)求函数f(x)的解析式;
(2)若x∈[2,4],求函数的值域;
(3)设数学公式,函数g(x)=x2-8ax-2a,x∈[2,4].若对于任意的x1∈[2,4],总存在x0∈[2,4]使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案