【题目】在中,角的对边分别为,向量(,
,满足.
(1)求角的大小;
(2)设 , 有最大值为,求的值.
【答案】(1);(2)或.
【解析】试题分析:(1)由条件|可得,,代入得(a﹣c)sinA+(b+c)(sinC﹣sinB)=0,根据正弦定理,可化为a(a﹣c)+(b+c)(c﹣b)=0,结合余弦定理a2+c2﹣b2=2acosB,代入可求角的大小;
(2)先求=﹣+,.结合0<A<,及二次函数的知识求解.
试题解析:
(1)由条件=,两边平方得,又
=(sinA,b+c),=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,即,
又由余弦定理=2acosB,所以cosB=,B=.
(2)m=(sin(C+),),n=(2,kcos2A) (),
=2sin(C+)+cos2A=2sin(C+B)+kcos2A=2ksinA+k-=-k+2sinA+=-+,而0<A<,sinA∈(0,1],
①时,取最大值为.
②时,当时取得最大值,解得
.
③时,开口向上,对称轴小于0当取最大值(舍去),
综上所述,或.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)左、右焦点分别为F1 , F2 , A(2,0)是椭圆的右顶点,过F2且垂直于x轴的直线交椭圆于P,Q两点,且|PQ|=3;
(1)求椭圆的方程;
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若 =0, = ;
①求证:直线l过定点;并求出定点坐标;
②求直线AT的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)<f(x),且f(x+3)为偶函数,f(6)=1,则不等式f(x)>ex的解集为( )
A.(﹣∞,0)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=ex+mx2﹣m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是( )
A.(﹣∞,0)
B.
C.
D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求出4个人中恰有2个人去 参加甲游戏的概率;
(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;
(3)用 分别表示这4个人中去参加甲、乙游戏的人数,记 ,求随机变量 的分布列与数学期望 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计划在某水库建一座至多安装 台发电机的水电站,过去 年的水文资料显示,水库年入流量 (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,不足 的年份有 年,不低于 且不超过 的年份有 年,超过 的年份有 年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来 年中,设 表示流量超过 的年数,求 的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量 限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 |
若某台发电机运行,则该台年利润为 万元,若某台发电机未运行,则该台年亏损 万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知(x+ )n展开式的二项式系数之和为256
(1)求n;
(2)若展开式中常数项为 ,求m的值;
(3)若展开式中系数最大项只有第6项和第7项,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com