精英家教网 > 高中数学 > 题目详情
5.已知各项均为正数的等比数列{an}中,3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,则$\frac{{{a_{11}}+{a_{13}}}}{{{a_8}+{a_{10}}}}$=27.

分析 由题意可得公比q的方程,解得方程可得q,可得$\frac{{{a_{11}}+{a_{13}}}}{{{a_8}+{a_{10}}}}$=q3,代值计算可得.

解答 解:设等比数列{an}的公比为q,
由3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,
可得a3=3a1+2a2
∴a1q2=3a1+2a1q,即q2=3+2q
解得q=3,或q=-1(舍去),
∴$\frac{{{a_{11}}+{a_{13}}}}{{{a_8}+{a_{10}}}}$=$\frac{({a}_{8}+{a}_{10}){q}^{3}}{{a}_{8}+{a}_{10}}$=q3=27,
故答案为:27.

点评 本题考查等差数列和等比数列的通项公式和性质,考查运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设集合A={x|1≤x<4},B={x|2a≤x<3-a}.若A∪B=A,则实数a的取值范围$a≥\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列命题:
①若给定命题p:?x∈R,使得x2+x-1<0,则?p:?x∈R,均有x2+x-1≥0;
②若p∧q为假命题,则p,q均为假命题;
③命题“若x2-3x+2=0,则x=2”的否命题为“若 x2-3x+2=0,则x≠2,
其中正确的命题序号是(  )
A.B.①②C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$是奇函数(a,b,c都是整数),且f(-1)=-2,f(2)<3
(1)求a,b,c的值;
(2)试判断当x<0时f(x)的单调性,并用单调性定义证明你的结论.
(3)若当x<0时2m-1>f(x)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)是定义域为R,最小正周期为$\frac{3π}{2}$的函数,若f(x)=$\left\{\begin{array}{l}cosx,({-\frac{π}{2}≤x<0})\\ sinx,({0≤x<π})\end{array}$,则$f({-\frac{14π}{3}})$的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}首项为1,公比q=2,前n项和为Sn,则下列结论正确的是(  )
A.?n∈N*,Sn<an+1
B.?n∈N*,an•an+1≤an+2
C.?n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+2}$=2a${\;}_{{n}_{0}+1}$
D.?n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+3}$=a${\;}_{{n}_{0}+1}$+a${\;}_{{n}_{0}+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知0<α<$\frac{π}{2}$,sinα=$\frac{1}{3}$,则cosα=$\frac{2\sqrt{2}}{3}$;cos2α=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=kex-$\frac{1}{2}$x2(k∈R).
(1)若x轴是曲线y=f(x)的一条切线,求实数k的值;
(2)设k<0,求函数g(x)=f′(x)+e2x+x在区间(-∞,ln 2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=Asin(ωx+φ)(ω>0,|φ|<π,x∈R)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f($\frac{8}{π}$x0)=-1,x0∈($\frac{π}{4},\frac{3π}{4}$),求sinx0的值.

查看答案和解析>>

同步练习册答案