【题目】如图,在正三棱柱中,所有棱长都等于.
(1)当点是的中点时,
①求异面直线和所成角的余弦值;
②求二面角的正弦值;
(2)当点在线段上(包括两个端点)运动时,求直线与平面所成角的正弦值的取值范围.
科目:高中数学 来源: 题型:
【题目】如图1,在边长为2的正方形ABCD中,P为CD中点,分别将△PAD, △PBC沿 PA,PB所在直线折叠,使点C与点D重合于点O,如图2.在三棱锥P-OAB中,E为 PB中点.
(Ⅰ)求证:PO⊥AB;
(II)求直线BP与平面POA所成角的正弦值;
(Ⅲ)求二面角P-AO-E的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的各项均为正数,a1=1,前n项和为Sn.数列{bn}为等比数列,b1=1,且b2S2=6,b2+S3=8.
(1)求数列{an}与{bn}的通项公式;
(2)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·全国Ⅱ卷)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.
(1)证明:直线CE∥平面PAB;
(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为, ,数列满足点在直线上.
(1)求数列, 的通项, ;
(2)令,求数列的前项和;
(3)若,求对所有的正整数都有成立的的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线l1和l2是异面直线,l1α,l2β,α∩β=l,则下列命题正确的是( )
A. l至少与,中的一条相交B. l与,都相交
C. l至多与,中的一条相交D. l与,都不相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)要得到的图像,只需要把函数的图像上的对应点的横坐标_________,纵坐标_________;
(2)要得到的图像,只需要把函数的图像上的对应点的横坐标_________,纵坐标___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com