精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若解不等式

(2)关于的不等式有解求实数的取值范围.

【答案】(1);(2).

【解析】

通过讨论x的范围,求出不等式的解集即可;(2)令f(x)=|x﹣a||x﹣3|,依题

意:f(x)max2,求出a的范围即可.

(1)当a=1时,原不等式等价于:|x﹣1|+|2x﹣3|>2.

x时,3x﹣42,解得:x2

1x时,2﹣x2,无解

x1时,4﹣3x2,解得:x

∴原不等式的解集为:{x|x2x}

f(x)>|x﹣3||x﹣a||x﹣3|>1

f(x)=|x﹣a||x﹣3|,依题意:f(x)max2

f(x)=|x﹣a||x﹣3|≤|a﹣3|

f(x)max=|a﹣3|

,解得 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是双曲线上的两点,线段的中点为,直线不经过坐标原点

1)若直线和直线的斜率都存在且分别为,求证:

2)若双曲线的焦点分别为,点的坐标为,直线的斜率为,求由四点所围成四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是关于的方程的两个不相等的实数根,那么过两点的直线与圆的位置关系是(

A.相离B.相切C.相交D.的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则直线y=x+1与曲线的交点个数为_____;若关于x的方程有三个不等实根,则实数a的取值范围是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥DABC,O为线段AC上一点,平面ADC⊥平面ABC,且△ADO,ABO为等腰直角三角形,斜边AO=4.

()求证:ACBD;

()将△BDODO旋转一周,求所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某年数学竞赛请自以为来自X星球的选手参加填空题比赛,共10道题目,这位选手做题有一个古怪的习惯:先从最后一题(第10题)开始往前看,凡是遇到会的题就作答,遇到不会的题目先跳过(允许跳过所有的题目),一直看到第1题;然后从第1题开始往后看,凡是遇到先前未答的题目就随便写个答案,遇到先前已答的题目则跳过(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答题),这样所有的题目均有作答,设这位选手可能的答题次序有n种,则n的值为(

A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆轴被曲线截得的线段长等于C1的长半轴长.

1)求实数b的值;

2)设C2轴的交点为M,过坐标原点O的直线C2相交于点AB,直线MAMB分别与C1交于点DE.

证明:

△MAB△MDE的面积分别是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是( )

1的极小值点;

2)函数有且只有1个零点;

3恒成立;

4)设函数,若存在区间,使上的值域是,则.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点与凳面圆形的圆心的连线垂直于凳面和地面,且分细钢管上下两段的比值为,三只凳脚与地面所成的角均为.是凳面圆周的三等分点,厘米,求凳子的高度及三根细钢管的总长度(精确到).

查看答案和解析>>

同步练习册答案