精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+a(x+lnx),a∈R. (Ⅰ)若当a=﹣1时,求f(x)的单调区间;
(Ⅱ)若f(x)> (e+1)a,求a的取值范围.

【答案】解:(Ⅰ)由题意得x∈(0,+∞); 当a=﹣1时,f(x)=x2﹣x﹣lnx, =
∴x∈(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0;
∴f(x)的单调减区间是(0,1),单调增区间是[1,+∞);
(Ⅱ)①当a=0时,f(x)=x2>0,显然符合题意;
②当a>0时,当 时;
f(x)<1+a+alnx ,不符合题意;
③当a<0时,则
对于2x2+ax+a=0,△=a2﹣8a>0;
∴该方程有两个不同实根,且一正一负,即存在x0∈(0,+∞),使得
即f′(x0)=0;
∴0<x<x0时,f′(x)<0,x>x0时,f′(x)>0;
∴f(x)min=f(x0)= = =
,∴x0+2lnx0﹣(e+2)<0;
∴0<x0<e;
得,
设y= ,y′=
∴函数 在(0,e)上单调递减;

综上所述,实数a的取值范围
【解析】(Ⅰ)a=﹣1时,求出f(x)=x2﹣x﹣lnx,通过求导,根据导数符号即可判断出f(x)的单调区间;(Ⅱ)讨论a的取值:a=0时,容易得出满足题意;a>0时,会发现函数x2+ax在(0,+∞)上单调递增,让 <1,便得到f(x)<1+a+alnx ,从而这种情况不存在;当a<0时,通过求导,容易判断出,存在x0∈(0,+∞),使f′(x0)=0,从而判断出f(x)的最小值f(x0),再由条件f(x) 便可得到x0∈(0,e),并根据f′(x0)=0,可求出 ,从而求出a的取值范围.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高一数学研究小组测量学校的一座教学楼AB的高度已知测角仪器距离地面的高度为h米,现有两种测量方法:

方法如图用测角仪器,对准教学楼的顶部A,计算并记录仰角后退a米,重复中的操作,计算并记录仰角

方法如图用测角仪器,对准教学楼的顶部A底部B,测出教学楼的视角,测试点与教学楼的水平距离b米.

请你回答下列问题:

用数据,a,h表示出教学楼AB的高度;

按照方法II,用数据,b,h表示出教学楼AB的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切,且被轴截得的弦长为,圆的面积小于13.

(1)求圆的标准方程;

(2)若点,点是圆上一点,点的重心,求点的轨迹方程;

(3)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线恰好平行?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.

(Ⅰ)当时,解关于x的不等式

(Ⅱ)若不等式的解集为D,且,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为平行四边形的四棱锥中,平面ABCD,且,点EPD的中点.

求证:

求证:平面AEC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线l的参数方程 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为p2cos2θ+p2sinθ﹣2psinθ﹣3=0
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 对任意 不等式恒成立,则正数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是美籍法国数学家伯努瓦曼德尔布罗特( )在20世纪70年代创立的一门新学科,它的创立为解决传统众多领域的难题提供了全新的思路.下图是按照分型的规律生长成的一个树形图,则第10行的空心圆的个数是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)= , (x∈[0,])
(1)求函数f(x)的值域;
(2)设△ABC的内角A,B,C的对边长分别为a,b,c,若f()=1,b=1,c= , 求a的值.

查看答案和解析>>

同步练习册答案