【题目】已知直线方程为,其中
(1)求证:直线恒过定点;
(2)当变化时,求点到直线的距离的最大值;
(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时的直线方程.
【答案】(1);(2);(3)
【解析】
试题(1)本题考察的是直线恒过定点,本题中直线含参数,我们需要把直线方程进行化简,把含的综合在一起,求出两个方程的解集即可得到定点.
(2)本题考察的是求点到直线的距离的最大值,因为直线恒过定点,只需保证定点与已知点的连线与已知直线垂直时距离最大,所以距离的最大值即为已知点与定点的距离,利用两点间距离公式即可求出答案.
(3)本题考察的是求直线的截距问题,由(1)直线过定点,根据点斜式方程写出直线方程,分别求出在轴的截距,根据面积公式结合基本不等式即可求出相应的斜率,从而求出直线方程.
试题解析:(1)证明:直线方程为,
可化为
对任意都成立,所以,解得,所以直线恒过定点.
(2)点到直线的距离最大,可知点与定点的连线的距离就是所求最大值,
即
(3)若直线分别与轴,轴的负半轴交于两点,直线方程为,
则,
当且仅当时取等号,面积的最小值为4
此时直线的方程为
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2x的焦点为F,过焦点F的直线交抛物线于A,B两点,过A,B作准线的垂线交准线与P,Q两点.R是PQ的中点.
(1)证明:以PQ为直径的圆恒过定点F.
(2)证明:AR∥FQ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装店对过去100天实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:
(1)已知该服装店过去100天的销售中,实体店和网店的销售量都不低于50件的频率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数;
(2)根据频率分布直方图,求该服装店网店销售量的中位数的估计值(精确到0.01).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l经过直线2x+y-5=0与x-2y=0的交点P.
(1)若直线l平行于直线l1:4x-y+1=0,求l的方程;
(2)若直线l垂直于直线l1:4x-y+1=0,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的方程为,直线的方程为,点在直线上,过点作圆的切线,切点为.
(1)若过点的坐标为,求切线方程;
(2)求四边形面积的最小值;
(3)求证:经过三点的圆必过定点,并求出所有定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率是,短轴的一个端点到右焦点的距离为,直线与椭圆交于两点.
(1)求椭圆的方程;
(2)当实数变化时,求的最大值;
(3)求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com