精英家教网 > 高中数学 > 题目详情

【题目】已知点是双曲线的左右焦点,其渐近线为,且其右焦点与抛物线的焦点重合.

1)求双曲线的方程;

2)过的直线相交于两点,直线的法向量为,且,求的值

3)在(2)的条件下,若双曲线在第四象限的部分存在一点满足,求的值及的面积.

【答案】1;(2;(3

【解析】

1)由焦点坐标和渐近线方程可构造关于的方程,解方程求得结果即可得到双曲线方程;

2)由直线法向量可得到直线方程,与双曲线方程联立得到韦达定理的形式;利用可构造关于的方程,解方程求得结果;

3)由的值可得到韦达定理的形式,利用弦长公式求得;设,由已知等式可用表示出,代入双曲线方程可求得,进而得到点坐标;利用点到直线距离公式求得的高,从而求得三角形的面积.

1)由题意知:抛物线的焦点为

,解得: 双曲线的方程为:

2)由直线的法向量可得其方向向量

得:

,则

解得:

3)将代入式化简得:,此时

,由得:

在双曲线 ,解得:

位于第四象限

,又,即

到直线的距离

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了月至月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )

A. 月接待游客逐月增加

B. 年接待游客量逐年减少

C. 各年的月接待游客量高峰期大致在

D. 各年月至月的月接待游客量相对于月至月,波动性较小,变化比较稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 中,分别为边的中点,以为折痕把折起,使点到达点的位置,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

(1)若=10,求yx的函数解析式;

(2)若要求“维修次数不大于的频率不小于0.8,求n的最小值;

(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋内有个不同的红球,个不同的白球,

(1)从中任取个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,,当时,的前项和满足

1)求的表达式;

2)设,数列的前项和为,求

3)是否存在正整数,使得成等比数列?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离,倾斜角为的直线经过焦点,且与抛物线交于两点.

1)求抛物线的标准方程及准线方程;

2)若为锐角,作线段的中垂线轴于点.证明:为定值,并求出该定值.

查看答案和解析>>

同步练习册答案